• Title/Summary/Keyword: Pulse Radar

Search Result 266, Processing Time 0.023 seconds

Target Measurement Error Reduction Technique of Suboptimal Binary Integration Radar (부 최적 이진누적 적용 레이더의 표적 측정오차 감소 기법)

  • Nam, Chang-Ho;Choi, Seong-Hee;Ra, Sung-Woong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.9
    • /
    • pp.65-72
    • /
    • 2011
  • A binary integration is one of sub-optimal pulse integration which decides detection based on discriminating m successful detections out of n trials in radar systems using multiple pulse repetition frequencies. This paper introduces target measurement error reduction technique to reduce azimuth errors in suboptimal binary integration radar which applies the near value by m rather than the optimal m and verifies the performance by analyzing the experimental data measured from real radar.

Spectrum Analysis of UWB Radar Transmitter for Short Range Automobile Applications (단거리 차량용 초광대역 레이더 송신기의 스펙트럼 분석)

  • Ko, Seok J.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.2
    • /
    • pp.57-64
    • /
    • 2015
  • In this paper, we propose structures and power spectral densities of UWB radar transmitters of Short Range Automobile. While the conventional transmitters did not consider interferences from self and other automobiles, the proposed method of this paper can minimize interferences. First, we compare a structure of the proposed method with pulse train and pulse compression method. Then, by using mathematical analysis and computer simulations, we show that the proposed method is superior to others. Also we can set proper parameters in UWB radar's transmitter through the numerical method of mathematical results.

Time-Domain Model of Surface Clutter for Airborne Phase-Array Radar (항공기 위상 배열 레이더에서 시간 영역의 지상클러터 생성 모델)

  • Kim, Tae-Hyung;Kim, Eun-Hee;Kim, Seon-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.7
    • /
    • pp.730-736
    • /
    • 2013
  • Time-domain clutter generation model for airborne pulse doppler phase-array radar is presented. Time-domain surface clutter signal is generated assuming earth of a sphere and considering geometry of a clutter patch, and generation of sub-array clutter signal is presented. The generated sub-array clutter signal can be used by simulation input signal in various radar applications of DBF(Digital Beamforming), ABF(Adaptive Beamforming), Stap(Space-Time Adaptive Processing) and etc.

A Search Band Implementation Considering the Receivers of the Electronic Warfare Support System (전자전 ES 시스템의 수신기를 고려한 탐색대역 생성)

  • Yoon, In-Bok;Jeong, Chang-Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1091-1096
    • /
    • 2011
  • The main factors of radar signals used in electronic warfare are Radio Frequency(RF), Pulse Repetition Interval(PRI), Pulse Width(PW), Scan Parameter(SP) and so on. This radar signals may have some important information for the electronic warfare. So, there is a necessity for making a threat database to decide whether the radar signal is a threat or not. When the electronic support system collects some threat radar signals, it needs the search band to control the receivers and filter banks of the system. In this paper we propose search band implementation considering the type and center frequency of the receivers of the electronic support system.

A De-interleaving Method of Frequency Agility Radar Signals in Comparison with PRI's of radars (PRI 비교를 통한 주파수 급속변경 레이더 신호분리)

  • Lim, Joong-Soo;Hong, Kyung-Ho;Lee, Du-Kyung;Shin, Dong-Hoon;Kim, Yong-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1832-1838
    • /
    • 2009
  • In this paper, we present new signal de-interleaving method for the frequency agility radar in which the carrier frequency is changed irregularly. Generally radar use a fixed carrier frequency, and it is easy for electronic warfare system to de-interleave the radar signal with respect to the frequency, pulse width(PW), and direction of signal arriving(DOA). In frequency agility radar, it is difficult to de-interleave the radar signals according to the carrier frequency because the frequency is changed irregularly. We suggest a good de-interleaving method to identify the frequency agility radar signals in comparison with PRI's of radars. First we calculate pulse repeat Interval(PRI) of radar in linked-list and queue structure and de-interleave the radar signals with PRI, PW, and DOA, then identify the frequency agility radar. When we use the proposed algorism to the frequency agility radar, we have a good de-interleaving results with electronic warfare systems.

Design and Performance Analysis of UWB Modules for Borehole Radar System (시추공 레이더 시스템에 사용되는 UWB 모듈의 설계 및 성능 분석)

  • Cho, Jae-Hyoung;Kim, Sang-Wook;Kim, Se-Yun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1121-1129
    • /
    • 2009
  • In this paper, the UWB(Ultra-Wide Band) modules such as a pulse generator and the LNA(Low-Noise Amplifier) with AGC(Auto Gain Control) are designed to construct a cross-borehole pulse radar system, of which performance is compared with the existing system. The budget and specification of the radar system are determined by calculating the total path loss of the underground medium including an empty cavity. The pulse generator is fabricated to have the repeatation frequency 40 kHz, the pulse width lower than 5 ns and the peak signal level +73 dBm. The UWB LNA is designed to have the noise figure 3.77 dB, the variable gain range 100 dB and the frequency range of 20 MHz to 200 MHz. Compared with the existing system in an actual test site, the implemented system renders it possible to detect the blind area due to the UWB LNA with low noise figure.

A 20 W GaN-based Power Amplifier MMIC for X-band Radar Applications

  • Lee, Bok-Hyung;Park, Byung-Jun;Choi, Sun-Youl;Lim, Byeong-Ok;Go, Joo-Seoc;Kim, Sung-Chan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.181-187
    • /
    • 2019
  • In this paper, we demonstrated a power amplifier monolithic microwave integrated circuit (MMIC) for X-band radar applications. It utilizes commercial $0.25{\mu}m$ GaN-based high electron mobility transistor (HEMT) technology and delivers more than 20 W of output power. The developed GaN-based power amplifier MMIC has small signal gain of over 22 dB and saturated output power of over 43.3 dBm (21.38 W) in a pulse operation mode with pulse width of $200{\mu}s$ and duty cycle of 4% over the entire band of 9 to 10 GHz. The chip dimensions are $3.5mm{\times}2.3mm$, generating the output power density of $2.71W/mm^2$. Its power added efficiency (PAE) is 42.6-50.7% in the frequency bandwidth from 9 to 10 GHz. The developed GaN-based power amplifier MMIC is expected to be applied in a variety of X-band radar applications.

A Study on Receiving Beam Pointing Error and MTI(Moving Target Indication) Performance in a Bistatic Radar Using Pulse Chasing (펄스 체이싱을 이용한 바이스태틱 레이더에서 수신 빔 조향 오차와 MTI(Moving Target Indication) 성능에 대한 연구)

  • Yang, Jin-Mo;Lee, Min-Joon;Kim, Whan-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1412-1422
    • /
    • 2010
  • A bistatic radar using the pulse chasing can detect a target to track successive transmitted pulses using a receive beam for effectively scanning the cosite search area. When tracking a transmitted pulse with the receive beam, some beam pointing errors within pulse-to-pulse can cause the timing error in received pulse and the variation of the signal strength. In this paper, we have proposed that some errors due to the receive beam pointing error could limit the MTI filter's performance and derived that the relationship between the MTI performance and the geometric factors which are the inherent properties in bistatic configuration. Through the simulation, we have considered the limitations of the improvement performance restricted by the receiving beam pointing error and confirmed the contribution to the performance improvement in maintaining the receiving beam pointing error of under 0.5 degrees.

Effect of System Instability Factors in a Bistatic MTI Radar Using Pulse Chasing Scan Method (펄스 체이싱 스캔 방식을 이용한 바이스태틱 MTI 레이더에서 시스템 불안정 요소들의 영향)

  • Yang, Jin-Mo;Han, Il-Tak;Lee, Yong-Suk;Lee, Min-Joon;Kim, Whan-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.299-311
    • /
    • 2011
  • In this paper, we have identified the system instability factors in a bistatic radar system using pulse chasing and considered their effects on the bistatic receiver's MTI(Moving Target Indication) improvement performance. The pulse chasing is a scan method that searchs a restricted area on the transmit pulse-to-pulse basis and the MTI filter is a signal processing that separates a target from some kinds of interferences such as clutter using small number of transmit pulses. Ideal MTI processing performance, e.g., clutter attenuation and improvement, has been limited by the property of the clutter itself, however, the MTI performance in a proposed bistatic receiver configuration could be affected by the receiving beam pointing error during pulse chasing scanning. Also, for the bistatic receiver, we have defined other system instability factors, which result from the time synchronization error, COHO's phase error, the frequency/phase synchronization error, and have analyzed their effects on the system performance improvement.

A Time-Sharing TX/RX Control Technique for the Rejection of Feedback Noise Jamming Interference (피드백 잡음재밍 간섭제거를 위할 시분할 송수신 제어기법)

  • Jeong Un-Seob;Ra Sung-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1201-1207
    • /
    • 2005
  • When the isolation between transmitter and receiver in Electronic Warfare equipment is not sufficient, the radiated noise jamming signal from the transmitter feeds back into the receiver and interferes with receiving radar pulse signal. Therefore pulse jamming and noise jamming can't be performed together in the same frequency bands. In this paper, we present a time-sharing TX/RX control technique of the switch matrix which inhibits the transmission of noise jamming signal by using the predicted gate of pulse train and also makes the corresponding channel filter operate to receive the radar pulse signal during the predicted gate pulse. This technique was implemented by EPLD and confirmed by experiment. The proposed technique enables the pulse jamming and the noise jamming to be simultaneously executed in multiple jamming environments.