• Title/Summary/Keyword: Pulse Propagation

Search Result 215, Processing Time 0.03 seconds

An Experimental Study on Characteristics of Small-scale PDE under Low-frequency Operating Conditions (소형 펄스 데토네이션 엔진 저주파수 작동 특성 실험연구)

  • Han, Hyung-Seok;Kim, Jung-Min;Oh, Sejong;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.81-89
    • /
    • 2018
  • In this study, the operating characteristics of a small-scale pulse detonation engine (PDE) were investigated experimentally for application as a small thruster and an igniter. The PDE was constructed using commercial gas tubes with an inner diameter of 4.22 mm. The operating and detonation propagation characteristics of the PDE were investigated over the ranges of equivalence ratios and operating frequencies. Measured detonation speed was close to 10% of the theoretical CJ values at 1 Hz and 5 Hz conditions. However, unstable propagation characteristics were shown at 20 Hz and lean conditions, where the velocity deficit was increased by 20~62%.

Improving Wave Propagation Performance of an Ultrasonic Waveguide for Heat Isolation (열 차단용 초음파 도파관의 전파성능 향상 연구)

  • 최인석;전한용;김인수;김진오
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.545-553
    • /
    • 2003
  • This paper is concerned with protecting piezoelectric transducers used in an ultrasonic flowmeter from the high temperature of hot fluid in a pipe by using a waveguide and with improving the propagation of ultrasonic longitudinal vibration in the waveguide. Waveguide material has been chosen for efficient insulation of heat transferred in the waveguide, and the minimum length of the waveguide for protecting piezoelectric transducer has been estimated. Forced response of the longitudinal vibration in a uniform circular rod has been obtained and the length of the waveguide has been selected for maximum amplitude. Longitudinal vibration response of a conically-tapered rod excited at a natural frequency has been obtained to confirm that wave motion is amplified as the cross-sectional size of the waveguide decreases along the axial direction. The fact that dispersion of a pulse wave in a waveguide is reduced as the cross-sectional radius is decreased has been examined theoretically and confirmed experimentally by using a single-rod waveguide. A bundle-type waveguide has proven to be a practical one through the evaluation of the wave propagation performance.

Analysis of High-Speed Pulse Propagation on Arbitrarily Interconnected Transmission Lines by an Efficient Node Discretization Technique (효율적인 노드분할법을 통한 임의 결선된 전송선로상의 고속 펄스 전송 해석)

  • 전상재;박의준
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.1
    • /
    • pp.37-46
    • /
    • 2003
  • The transient responses on arbitrarily interconnected digital transmission lines are analyzed by an efficient node discretization technique. Since the proposed node discretization technique offers an efficient means to discretize transmission lines, the transient waveform at any position on the arbitrarily interconnected lines is easily predicted. Dispersive microstrip multiconductor transmission lines arbitrarily connected are analized for generality. The derivation of frequency-dependent equivalent circuit elements of coupled transmission lines have been carried out by the spectral domain approach(SDA). The effects of variations of excited pulse width on the crosstalks of the high-speed microstrip coupled-lines are also investigated. It has been well known that the crosstalk spike level is monotonously increased when the coupling length and effective permittivity of substrate are increased. In this paper, it is found that the variations of crosstalk level are not further monotonous as shortening the exciting pulse width toward several picosecond. The results are verified by the generalized S-parameter technique.

Breakdown Properties in Physiological Saline by High Voltage Pulse Generator

  • Byeon, Yong-Seong;Song, Ki-Baek;Uhm, Han-Sup;Shin, Hee-M.;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.333-333
    • /
    • 2011
  • We have investigated the breakdown properties in liquids by high voltage pulse system. High voltage pulse power system is consisted of the Marx-generator with two capacitors (0.5 ${\mu}F$, withstanding voltage is 40 kV), to which the charging voltage can be applied to maximum 30 kV DC, spark gap switch and charging resistor of 20 $M{\Omega}$. We have made use of tungsten pin electrodes of anode-cathode (A-K), which are immersed into the liquids. The breakdown voltage and current signals are measured by high voltage probe (Tektronix P6015A) and current monitor (IPC CM-1.S). Especially the high speed breakdown or plasma propagation characteristics in the pulsed A-K gap have been investigated by using the high speed ICCD camera. We have measured the electron temperature through the Boltzmann plot method from the breakdown spectrums. Here the A-K gap has been changed by 1 mm, 2 mm, and 3 mm. The used liquids are distilled water and solution of salt (0.9 %). The output voltage and current signals at breakdown in distilled water are shown to be bigger than those in saline solution. The breakdown voltage and current characteristics in liquids will be discussed in accordance with A-K gap distances. It is also found that the electron temperatures and plasma densities in liquids are decreased in conformity with A-K gap.

  • PDF

Centrifuge Simulation of Wave Propagation and Isolation Method (환경진동의 지반내 전파특성과 차단에 관한 원심모형실험)

  • Lee, Kang-Il;Kusakabe, O.;Kim, Chan-Kee;Kim, Tae-Hoon;Sul, Jin-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.738-745
    • /
    • 2004
  • There are a number of ways to reduce the ground vibrations, one of which is by installing underground walls. Model tests for ground vibration have been conducted in recent years, but limited attention has been paid to underground wall which can reduce high vibrations. Up to date, only barriers have been actually installed in dry sand because of many unknown factors subsisting on the behavior of the ground. The characteristics of vibration sources, ground conditions and wall barriers have not been well understood yet, therefore centrifugal modeling was adopted to examine all these characteristics. This paper describes a ball dropping system, which can generate a pulse wave propagation through soil mass, and the test results show the effectiveness of underground wall barrier in reducing mechanical vibration.

  • PDF

A study on the crack initiation of SCM 4 (SCM4 의 크랙開始点 에 관한 硏究)

  • 옹장우;박찬국;김재훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.135-139
    • /
    • 1985
  • A J$_{IC}$ test procedure by ultrasonic method performed to observe the crack opening behavior of fatigue precrack and detect the initiation of crack propagation of compact tension specimen in this paper. Pulse-echo method with 5 MHz transducer was used on the Cr-Mo steel quenched and tempered at 593.deg. C. We obtained the following results in the elastic-plastic fracture toughness test by ultrasonic method. Echo height is a little increased linearly and rapidly at the early stage of loading . Then it is decreased considerably, finally at the unstable crack growth stage, it is rapidly increased at an unpredictable rae. The initiation of crack propagation is supposed to be at the stage deviated from linearly decreased region and then blunted. J$_{IC}$ value(10.15-12.15 Kgf/mm) by ultrasonic method is lower than that(12.2 Kgf/mm) by R-curve method. But, it is required that the research for the more exact evaluation about correlation between echo height and the crack opening behavior of precrack tip will be continued. continued.ued.

Dynamic elastic local buckling of piles under impact loads

  • Yang, J.;Ye, J.Q.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.543-556
    • /
    • 2002
  • A dynamic elastic local buckling analysis is presented for a pile subjected to an axial impact load. The pile is assumed to be geometrically perfect. The interactions between the pile and the surrounding soil are taken into account. The interactions include the normal pressure and skin friction on the surface of the pile due to the resistance of the soil. The analysis also includes the influence of the propagation of stress waves through the length of the pile to the distance at which buckling is initiated and the mass of the pile. A perturbation technique is used to determine the critical buckling length and the associated critical time. As a special case, the explicit expression for the buckling length of a pile is obtained without considering soil resistance and compared with the one obtained for a column by means of an alternative method. Numerical results obtained show good agreement with the experimental results. The effects of the normal pressure and the skin friction due to the surrounding soil, self-weight, stiffness and geometric dimension of the cross section on the critical buckling length are discussed. The sudden change of buckling modes is further considered to show the 'snap-through' phenomenon occurring as a result of stress wave propagation.

Stability of Triplet NbTi Cable-In-Conduit Conductor (NbTi 관내 3연선 도체의 안정성)

  • Jang, H.M.;Oh, S.S.;Ha, D.W.;Ha, H.S.;Bae, J.H.;Kim, S.C.;Ryu, K.S.;Wang, Q.L.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.82-84
    • /
    • 1998
  • The normal zone propagation velocity and minimum quench energy (MQE) of cable-in-conduit conductors (CICC) has been investigated at the different background magnetic fields and supercritical helium pressures. The sample CICC of 2 m in length was fabricated with triplet NbTi/Cu strands inserting into a round stainless-steel tube. The heat pulse disturbance with duration time about 400 ms was acted on the center region of the CICC to quench the strands. The normal zone propagation velocity increased with operating current of the CICC. The measured velocity with respect to operation current could be fitted with numerical results.

  • PDF

A study on the determination of Ultrasonic Travel Time by Norm Phase-Time Method (위상시간법에 의한 초음파전파시간의 결정에 관한 연구)

  • 이은방
    • Journal of the Korean Institute of Navigation
    • /
    • v.18 no.4
    • /
    • pp.137-146
    • /
    • 1994
  • In this paper, a new algorithm to measure the ultrasonic travel time is proposed, which is fundamental to estimate distance depth and volume in several media. Pulse wave has been used to measure travel time of transmitted signal. However, due to the characteristic of transducer and propagation, the received signal is so distorted that it is difficult to measure travel time, which is propagation, the received signal is so distorted that it is difficult to measure travel time, which is to be time difference between transmitted and received signals. In this proposed method, transmitted and received signal are transformed respectively into norm phase newly designed by this paper and displayed on phase-time curve. And travel time is simply determined by the arithmetic numerical mean of time difference at the identical norm phase on the phase-time curves of transmitted and received signals. This method has several features; firstly, travel time is calculated analytically with high accuracy by least square error method, secondly, it is useful to compare the difference of signal magnitude for time information, thirdly, noise and discrete errors are relatively small, finally, the measurement accuracy is not influenced by D.C. bias. In particular, this method is useful and applicable to measuring very short distance and sound speed with high accuracy.

  • PDF

Visualization of Plasma Produced in a Laser Beam and Gas Jet Interaction (레이저와 질소가스 상호충돌로부터 발생되는 플라스마 가시화)

  • Kim Jong-Uk;Kim Chang-Bum;Kim Guang-Hoon;Lee Hae-June;Suk Hy-Yong
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.39-42
    • /
    • 2002
  • In the current study, characteristics of the laser-induced plasma were investigated in a gas filled chamber or in a gas jet by using a relatively low intensity laser $(I\;\leq\;5\;\times\;10^{12}\;W/cm^2)$. Temporal evolutions of the produced plasma were measured using the shadow visualization and the shock wave propagation as well as the electron density profiles in the plasma channel was measured using the Mach-Zehnder interferometry. Experimental results such as the structure of the produced plasma, shock propagation speed $(V_s)$, electron density profiles $(n_e)$, and the electron temperature $(T_e)$ are discussed in this study. Since the diagnostic laser pulse occurs over short time intervals compared to the hydrodynamic time scales of expanding plasma or a gas jet, all the transient motion occurring during the measurement is assumed to be essentially frozen. Therefore, temporally well-resolved quantitative measurements were possible in this study.

  • PDF