• 제목/요약/키워드: Pulse Jet

검색결과 87건 처리시간 0.055초

Study on the frequency of self-excited pulse jet

  • Wang, Jian;Li, Jiangyun;Guan, Kai;Ma, Tianyou
    • International Journal of Fluid Machinery and Systems
    • /
    • 제6권4호
    • /
    • pp.206-212
    • /
    • 2013
  • Self-excited pulse jet is a specific nozzle with a closed chamber which can change a continuous jet into a pulse one. Energy of the pulse jet can be output not only unevenly but also with multifrequency. With the peak pressure of pulse jet, the hitting power would be 2~2.5 times higher than that of continuous jet. In order to reveal the correlation between the self-excited pulse frequency and nozzle diameter ratio, nozzle spacing and operating pressure, the model of 3D unsteady cavitation model has been used. We found that with the same nozzle structure parameters and the different operating pressure, the self-excited frequency and the width of peak crest are different, but the wave profiles are similar. With FFT, we also found that the less bandwidth of amplitude in low frequency range will lead to the wider wave crest of outlet velocity in its time domain, and the larger force of the strike will be gained. By studying the St of self-excite nozzle, not only the frequency of a certain nozzle can be predicted, but also a nozzle structure with a certain frequency can be designed.

아음속 횡단 유동장으로 펄스 분사된 액체 제트의 분무특성 (Spray Characteristics of a Pulsed Liquid Jet into a Cross-flow of Air)

  • 이인철;변용우;구자예
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.61-64
    • /
    • 2008
  • The present study of these experiments are close examination of spray characteristics that are continuous liquid jet and modulated pressure pulse liquid jet. The experiments were conducted using water, over a range of cross-flow velocities from 42${\sim}$136 m/s, with injection frequencies of 35.7${\sim}$166.2 Hz. Between continuous cross-flow jet and pressure pulsed cross-flow jet for characteristics of penetration, breakup point, spray angle and macro spray shape are investigated experimentally. In cross-flow field, main parameter of liquid jet for breakup was cross-flow stream rather than pressure pulse frequency. As oscillation of the periodic pressure that could make liquid jet moved up and down, the mixing efficiency was increased. Also, a bulk of liquid jet puff was detected at upper field of liquid surface. So, this phenomenon has a good advantage of mixing spray from concentration of center area to outer area. Because of pressure pulsation frequency, an inclination of SMD for the structured layer was evanescent. Cross-sectional characteristics of SMD at downstream area were non-structured distributions. Then cross-sectional characteristics of SMD size were about same tendency over a range that is effect of spray mixing. The tendency of volume flux value for various frequency of pressure pulse was same distribution. And volume flux was decreased when the frequency of pressure pulse increase.

  • PDF

고온 세라믹필터의 펄스젯 탈진 성능에 관한 연구 (A Study on the Performance of Pulse Jet Cleaning in High Temperature Filter)

  • 김병렬;박승철;박병철;조현준;오형모;황태원;신상운
    • 방사성폐기물학회지
    • /
    • 제3권1호
    • /
    • pp.9-16
    • /
    • 2005
  • To evaluate parameters influencing on the dust removal of the High Temperature Filter(HTF) system, a computer simulation of fluid dynamics inside the system had been performed. The results showed that the optimum pulse jet periods were 50ms and 90ms for the 1000mm and 1500mm long filter elements respectively. Dust removal effect was very excellent under the pulse jet pressure of 3 bar. But the distance between the pulse jet nozzle and the venturi of a filter element had no meaningful effect on the performance with the variation from 5mm to 10mm. Compared to the dispersion mode of pulse jet, the collective mode of pulse jet flow was preferable in maintaining the pressure inside the system stable.

  • PDF

사각형 여과집진기 충격기류 시스템의 최적탈진조건에 관한 실험적 연구 (Experimental study on the optimum pulse jet cleaning conditions of a rectangular bag-filter system)

  • 박승욱;김태형;이효우;하현철;정재훈
    • 한국산업보건학회지
    • /
    • 제18권3호
    • /
    • pp.189-203
    • /
    • 2008
  • Cylindrical bag filter system with pulse jet cleaning has been the most common device to control particle laden exhaust gas from the various industrial processes. But, it has many shortcomings due to particle reattachment and frequent bag rupture. In recent years, rectangular type bag filter system has been developed to overcome the problems associated with the cylindrical system. However, not many studies about the rectangular system were not done, compared to the cylindrical system. In this study, the optimum pulse jet cleaning conditions were thus tested by the series of experiments. The factors tested in this study are pulse distance, pulse pressure, pulse duration, the number of holes for pulsing and bag materials. A single bag ($1,500mmL{\times}50mmW{\times}300mmH$) system and a multi-bags (3 bags in a row) were tested separately. The highest removal efficiency with a single bag system was found at the conditions with pulse distance of 10cm, pulse pressure of $3kg/cm^2$, pulse duration of 0.3s, pulse jet number of 6 and Polyester bag. With the multi-bags system, the best cleaning conditions were found at the bag interval of 20cm with the simultaneous pulsing and the bag interval of 15cm with the serial pulsing.

펄스 아크 스파크 제트 플라즈마 구동기에 의해 발생된 고속 제트의 효율적 운전 성능 특성에 관한 연구 (Performance Characteristics of a High-Speed Jet Produced by a Pulsed-Arc Spark Jet Plasma Actuator)

  • 김영순;신지철
    • 한국항공우주학회지
    • /
    • 제45권11호
    • /
    • pp.907-913
    • /
    • 2017
  • 아크 플라즈마에 의해 구동되는 스파크 제트의 다양한 에너지 공급 방법에 따른 효율적 운전 성능 특성에 대한 실험적 연구를 수행하였다. 펄스 당 37 mJ의 주입 에너지에 의한 급속한 기체의 가열에 의해 약 330 m/s의 고속 제트가 발생함을 확인하였다. 제트의 최대 속도와 침투 거리는 각각 주입된 전력량과 펄스 당 주입된 에너지에 비례하였다. 낮은 에너지에서는 오리피스 직경이 작을수록 더 높은 속도의 제트가 발생하였다. 공급 에너지가 같다면 전류를 높인 펄스가 펄스 폭을 높인 펄스보다 높은 속도의 제트를 발생시켰다. 펄스 폭이 약 $10{\mu}s$이고 펄스 당 에너지가 약 10 mJ인 경우가 효율적인 운전에 보다 더 적합한 것으로 확인되었다.

섬광 X선과 잔류관통깊이 분석을 통한 성형작약탄 제트에 대한 펄스전류 효과 (The Effect of High Current Pulse against Shaped Charge Jet by Flash X-Ray and Residual Penetration Depth)

  • 주재현;최준홍;김동규;김시우;김정태
    • 한국군사과학기술학회지
    • /
    • 제18권5호
    • /
    • pp.574-581
    • /
    • 2015
  • In this paper, the effect of high voltage current pulse against shaped charge jet was analyzed through the visualization of jet behavior using flash X-ray and comparison of depth of penetration(DOP) into RHA(Rolled Homogeneous Armor) witness plates. The behavior of jet particles has been acquired using a flash X-ray equipment when current pulse was applied into the metal jet of a shaped charge(SC) warhead. Typical results such as jet breakup and radial jet dispersion, which are due to electromagnetic pressure by current pulse, have been obtained. Dozens of penetration experiments using a shaped charge with 55 mm diameter were performed according to various combinations of major parametric variables such as electrode spacing, standoff distance from SC warhead to electrode, and charge voltage. Subsequently, interrelations between major parametric variables and DOPs into RHA were analyzed.

사각형 여과 집진기 충격기류 탈진시스템의 기초 연구 (The Fundamental Study on Pulse Jet Cleaning of Rectangular Bag-Filter System)

  • 박승욱;김태형;양준호;이효우;하현철;정재훈
    • 한국산업보건학회지
    • /
    • 제18권2호
    • /
    • pp.149-160
    • /
    • 2008
  • Bag-filter system has been widely used in industrial field to remove the particulate matters from the exhaust gas. The cylindrical type of bag-filter has been generally used. But it has many shortcomings. The reattachment of separated particles on the surface of bags could result in high pressure drop of bag-filter system and subsequent decrease of air flow rate since the cylindrical type bag-filter system should have the upward flow pattern. In addition, the supply of very high pressure pulse air jet to remove particulate matters on the surface of filter could result in a frequent rupture of bags. To overcome these shortcomings of the cylindrical type, the rectangular type was developed in the developed countries and imported to Korea. But, there was not many design data available to understand the mechanisms. Thus, the fundamental experiments were conducted in this study to get some ideas about the pulse jet cleaning of rectangular type bag filter system. The experimental factors are as follows; pulse distance, pulse duration, pulse interval, pulse pressure and pulse nozzle type. Experiments followed the factorial design method. With the shorter pulse distance, the distribution of pressure drops was relatively not uniform while the particulate removal efficiency was higher. With the longer duration of pulsing and the more number of pulse nozzle, the removal efficiency was higher and the pressure drop distribution was more uniform.

고온 고압 집진을 위한 역세정 유동장의 특성에 관한 연구 (A Study on the Reverse Cleaning Flow Characteristics for High Temperature and High Pressure Filtration)

  • 김장우;정진도;김은권
    • 한국대기환경학회지
    • /
    • 제19권1호
    • /
    • pp.25-31
    • /
    • 2003
  • Ceramic filter has been demonstrated as an attractive system to improve the thermal efficiency and to reduce the effluent pollutants. Removal of particulates from the hot gas stream is very important in air pollution control. In particular, the elimination of the particulate matters discharged from a gas turbine at high temperature can prevent the corrosion inside the IGCC. In this study, a Lab. scale test and numerical simulation were carried out to comprehend the relationship between pulse jet pressure and recovery of pressure drop and to characterize the reverse cleaning flow through a ceramic fil-ter element under high temperature and high pressure. When the pulse-jet pressures were 2, 3 and 4 kg/$ extrm{cm}^2$, the cleaning effect increase of about 10~30% by recovery of pressure drop caused by pulse pressure. Cleaning effect at 45$0^{\circ}C$ was greater than that at 55$0^{\circ}C$ or 650$^{\circ}$ for the same pulse pressure. According to the result of the present simulation, high pressure has been formed in terminal and central regions in our models and temperature distribution caused by pulse air is to be uniform comparatively on inner surface of filter.

충격기류식 여과집진기의 내부 유동 시뮬레이션 해석을 통한 압력손실 예측 (Prediction of Pressure Drop Using the Internal Flow Simulation of Pulse Air Jet Bag Filters)

  • 장경민;정은상;서정민
    • 한국환경과학회지
    • /
    • 제29권5호
    • /
    • pp.457-468
    • /
    • 2020
  • With continuous industrial development, the types, and amount of particulate matter (PM) have been increasing. Since 2018, environmental standards regarding PM have become more stringent. Pulse air jet bag filters are suitable for PM under the 20 ㎛ and, can function regardless of size, concentration and type. Filtration velocity and shape are important factors in the operation and design of the pulse air jet bag filters however, few established studies support this theory. In this research, numerical simulations were conducted based on experimental values and, several methods were employed for minimizing the pressure drop. In the pilot system, as the inlet duct velocity was faster than 19 m/sec, flow was not distributed equally and, re-entrainment occurred due to the hopper directional vortex. The multi-inlet system decelerated the hopper directional vortex by 25 ~ 30%, thereby decreasing total pressure drop by 6.6 ~ 14.7%. The guide vane system blocked the hopper directional vortex, which resulted optimal vane angle of 53°. The total pressure of the guide vane system increased by 0.5 ~ 3% at 1.5 m/min conditions. However, the filtration pressure drop decreased by 4.8 ~ 12.3% in all conditions, thereby reducing the operating cost of filter bags.

간헐탈진형 충격기류식 여과집진장치의 여과포 반사거리 예측 (Prediction of Off-line Type Pulse Air Jet Bag Filter Reflection Distance)

  • 손정삼;정용현;서정민
    • 한국환경과학회지
    • /
    • 제32권11호
    • /
    • pp.801-809
    • /
    • 2023
  • The purpose of this study is to predict the reflection distance following to the pulsing pressure, total air supplying, filter bag size using numercial analysis techniques and use it as an efficient operation condition and economic data for off-line type pulse air jet bag filter. In this research, filtration area 6 m2 condition, calculate filter resistance coefficient for simulation through the main experiments using coke dust. Ansys fluent V19.0 apply to CFD simulation, and analysis pulsing characteristics about pulsing pressure, filtration velocity and nozzle diameter. The maximum reflecting distance of off-line type pulse air jet bag filter is 1,000 mm regardless of total air supplying at over the 42 L/m2 conditions, that indicates off-line type can extend filter bag length 1,000 mm than on-line type. In order to effective primary and secondary pulsing of off-line type pulse air jet bag filter, over the 5 bar of pulsing pressure and over the 42 L/m2 of total air supplying are needed.