• Title/Summary/Keyword: Pulse Frequency

Search Result 1,954, Processing Time 0.03 seconds

Advanced Induction Heating Equipment using Dual Mode PWM-PDM Controlled Series Load Resonant Tank High Frequency Inverters

  • Fathy, Khairy;Kwon, Soon-Kurl;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.246-256
    • /
    • 2007
  • In this paper, a novel type auxiliary active edge resonant snubber assisted zero current soft switching pulse modulation Single-Ended Push Pull (SEPP) series load resonant inverter using IGBT power modules is proposed for cost effective consumer high-frequency induction heating (IH) appliances. Its operating principle in steady state is described by using each switching mode's equivalent operating circuits. The new multi resonant high-frequency inverter with series load resonance and edge resonance can regulate its high frequency output power under a condition of a constant frequency zero current soft switching (ZCS) commutation principle on the basis of the asymmetrical pulse width modulation (PWM) control scheme. Brand-new consumer IH products using the proposed ZCS-PWM series load resonant SEPP high-frequency inverter using IGBTs is evaluated and discussed as compared with conventional high-frequency inverters on the basis of experimental results. In order to extend ZCS operation ranges under a low power setting PWM as well as to improve efficiency, the high frequency pulse density modulation (PDM) strategy is demonstrated for high frequency multi-resonant inverters. Its practical effectiveness is substantially proved from an application point of view.

Analysis of the Influence of Mutual Relation of Optical Pulse Frequency Chirp and Kerr Effect on the Mid-Span Spectral Inversion Methods for the Long-Haul Optical Transmission (광 펄스 주파수 첩과 Kerr 효과의 상호 관계가 장거리 광 전송을 위한 MSSI 보상 기법에 미치는 영향 분석)

  • 이성렬;이윤현
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.9
    • /
    • pp.898-906
    • /
    • 2002
  • In this paper, we investigated the improvement degree of transmission distance of the various initial frequency chirped optical pulse with 5 dBm initial power dependence on the various bit rate and fiber dispersion coefficient, when MSSI(Mid-Span Spectral Inversion) with the optimal pump power condition is adopted for the compensation method for optical pulse distortion. And we analyzed the influence of mutual relation of optical pulse frequency chirp and Kerr effect on the MSSI methods for the long-haul optical transmission through the computer simulation. We found that the compensation degree of distorted optical pulse varies as a consequence of the variation of combined phase modulation of self phase modulation(Kerr effect) and initial frequency chirp parameter dependence on the fiber dispersion coefficient. And we found that, if the transmission bit rate is increased k times, the dispersion coefficient value of dispersion shift fiber is decreased $2^k$ times so as to be almost the same performance of the transmission system with k times lower bit rate.

Fault Detector and Length Measurement of Electric Cables Based on Frequency Waves

  • Chawporn, Talerngkiat;Chaikla, Amphawan;Sriratana, Witsarut;Trisuwannawat, Thanit
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.45-48
    • /
    • 2003
  • This research presents an approach to simultaneously detect the faults and measure the length of the electric cables. This approach is easy to use and inexpensive. Moreover, it can be applied to any kinds and sizes of the electric cable. This paper uses 750V $4{\times}4$ Sq.mm. cables. The concept is to send the 2 kHz pulse into the electric cable. When the pulse bumps into the fault, it bounces back. Then, the total time the pulse travels back and forth and the shape of the pulse after bumping are inspected using the pulse detector and pulse converter. Next, the signal obtained is modulated with 10 MHz carrier pulse to segregate into several small pulses before sending to 8-bit counter. The length of the electric cable can be obtained using microcontroller and the location of the faults can be seen on the LCD screen. This approach can be used to inspect the electric cables with the length of at least 15 m.

  • PDF

Phase Angle Control in Resonant Inverters with Pulse Phase Modulation

  • Ye, Zhongming;Jain, Praveen;Sen, Paresh
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.332-344
    • /
    • 2008
  • High frequency AC (HFAC) power distribution systems delivering power through a high frequency AC link with sinusoidal voltage have the advantages of simple structure and high efficiency. In a multiple module system, where multiple resonant inverters are paralleled to the high frequency AC bus through connection inductors, it is necessary for the output voltage phase angles of the inverters be controlled so that the circulating current among the inverters be minimized. However, the phase angle of the resonant inverters output voltage can not be controlled with conventional phase shift modulation or pulse width modulation. The phase angle is a function of both the phase of the gating signals and the impedance of the resonant tank. In this paper, we proposed a pulse phase modulation (PPM) concept for the resonant inverters, so that the phase angle of the output voltage can be regulated. The PPM can be used to minimize the circulating current between the resonant inverters. The mechanisms of the phase angle control and the PPM were explained. The small signal model of a PPM controlled half-bridge resonant inverter was analyzed. The concept was verified in a half bridge resonant inverter with a series-parallel resonant tank. An HFAC power distribution system with two resonant inverters connected in parallel to a 500kHz, 28V AC bus was presented to demonstrate the applicability of the concept in a high frequency power distribution system.

A Study on Color Control in Gas Discharge Tube (기체 방전관의색상 제어에 관한 연구)

  • Lee, Jong-Chan;Aono, Masaharu;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.285-288
    • /
    • 1996
  • The electronic operation of the gas discharge tube is controlled by the electrical energy as sinusoidal waveform in arbitrary frequency range, or as a sequence of pulses at a wide range of duty cycle, the gas composition, the kind of electrode and the vessel geometry. In this paper, the pulsed mode operated gas discharge tube is composed with mixed gas of IIg-Ne ( 10 Torr ), in the tube of 15.0 mm outer diameter and has variable color from red to blue with changing frequency and pulse width in high voltage. As increasing pulse width and frequency in the gas discharge tube, the phenomenons that the electron temperature in the positive column increases and the radiation from atoms of higher upper state energy levels increases, exist. The color have the locus from red (0.4972, 0.3128) to blue (0.2736, 0.2619) in CIE chromacity diagram with increasing pulse width and frequency. The changing method of pulse width and frequency has been shown to be suitable for the luminous color control.

  • PDF

Improvement of Power Spectrum in Ultrashort Pulse Reflectometry Signals Using Three Chirp Configuration

  • Roh, Young-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.3
    • /
    • pp.51-56
    • /
    • 2014
  • The flat power spectrum of the transmitter output signal for the desired frequency range is ideal to achieve the best performance of ultrashort pulse reflectometry. However, the power spectrum of a typical pulse generator decreases significantly as frequency increases. A configuration of three chirped waveforms was employed to improve the power spectrum of the transmitter signal at higher frequencies. To determine the amplification gain required for higher frequency components, three chirped waveforms were theoretically generated and their power spectra were measured using numerical band-pass filters. Based on the results of numerical computations, the three chirp configuration was successfully applied to the design of the transmitter for a broadband system.

Influence of Sustain Pulse-width on Electrical Characteristics and Luminous Efficiency in Surface Discharge of AC-PDP

  • Jeong, Yong-Whan;Jeoung, Jin-Man;Choi, Eun-Ha
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.276-279
    • /
    • 2005
  • Influences of sustain pulse-width on electrical characteristics and luminous efficiency are experimentally investigated for surface discharge of AC-PDP. A square pulse with variable duty ratio and fixed rising time of 300 ns has been used in the experiment. It is found that the memory coefficient is significantly increased at the critical pulse-width. And the wall charges and wall voltages as well as capacitances are experimentally measured by Q- V analysis method along with the voltage margin relation, in terms of the sustain pulse-width in the range of $1{\mu}s$ to $5{\mu}s$ under driving frequency of 10 kHz to 180 kHz. And the luminous efficiency is also experimentally investigated in above range of sustain pulse-width with driving frequency of 10 kHz to 180 kHz. It is noted that the luminous efficiency for 10 kHz and 180 kHz are 1.29 1m/W and 0.68 1m/W respectively, since the power consumption for 10 kHz is much less than that for 180 kHz. It has been concluded that the optimal sustain pulse-width is in the range of $2.5 {\~}4.5{\mu}s$ under driving frequency range of 10 kHz and 60 kHz, and in the range of $1.5 {\~} 2.5{\mu}s$ under driving frequency range of 120 kHz and 180 kHz based on observation of memory coefficient, and wall voltage as well as luminous efficiency.

Correlation Results of Pulse/Respiration Ratio and Body Composition Analysis (맥솔(脈率)과 체성분(體成分) 분석(分析)의 상관성(相關性) 연구(硏究))

  • Park, Jae-Sung;Park, Young-Bae;Kim, Min-Yong;Park, Young-Jae
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.10 no.2
    • /
    • pp.132-150
    • /
    • 2006
  • Objectives : The objective is that we measure and analyze Pulse-Respiration Ratio and Body Composition Analysis to study the correlation between both. Methods : First, after subjects take a rest over 10 minutes, we measure their electrocardiogram and respiration pattern through which we take average peak interval to calculate an average pulse cycle and a respiration cycle. An average respiration cycle divided by an average Pulse Rate gives Pulse-Respiration Ratio. Next, we draw out 22 Body Composition Analysis indicators by using In-Body 720 model. Last, we analyze and take statistics on them by using SPSS 13.0 program. Results : Negative is the correlation between P/R Ratio and Body Composition Analysis indicator like fatness degree, body fat volume, body fat rate, abdominal fatness, BMI. Conclusions : 1. The higher P/R Ratio the more likely to be thin, the lower P/R Ratio the more likely to be fat. 2. We separately analyze P/R Ratio depending on each breathing frequency and pulse frequency to find out that breathing frequency has great influence and that breathing frequency decides the fatness degree. 3. In study on the correlation between P/R Ratio and Body Composition Analysis, fatness degree, in-body fat volume, in-body fat rate, BMI are the related indicators, which shows the connection with the fatness indicators. 4. In study on the correlation between Han-Yeol [寒熱] grade and Body Composition Analysis indicators, the result is that Han[寒] has no connection and that only Yeol[熱] grade has something to do with it, which means the higher heat symptom subjects have, the more basic metabolism volume and muscular build they have.

  • PDF

A Study on characteristics of the forward type high frequency pulse power supply for lamp type ozonizer (램프형 오존발생기용 Forward type 고주파 펄스 전원장치의 특성에 관한 연구)

  • 김경식;김동희;이광식;원재선;송현직
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.2
    • /
    • pp.89-96
    • /
    • 2000
  • This paper describes the forward type pulse power supply which is the simple circuit configuration and easy to be managed using a power semiconductor switching device(Power-MOSFET) in the view of commercialization. The maximum value of output pulse voltage of the proposed pulse power supply system can be realized by the variation of phase angle($\phi$) of bridge rectifier circuit and also its pulse period is determined by the duty ratio of Power-MOSFET. The principle of basic operating and the operating characteristics of the forward type pulse power supply are estimated by the switching frequency, the variation of phase angle($\phi$)It is shown that theoretical and experimental results are in good agreement by comparing simulation and experimental results of proposed pulse power supply when a lamp type ozonizer can be used as a load. This proposed pulse power system shows that it can be practically used in the future as a power source system in various fields.

  • PDF

A High-Efficiency 2 GHz Balanced Pulse Generator for Ground Penetrating Radar System (평형구조를 이용한 지표투과레이다용 2 GHz 대역 고효율 펄스발생기)

  • Jeong, Heechang;Seo, Munkyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.11
    • /
    • pp.928-931
    • /
    • 2017
  • This paper presents a 2 GHz pulse generator in balanced configuration for ground penetrating radar(GPR). In order to improve the input and output matching, the pulse generator is designed in balanced configuration with $90^{\circ}$ hybrid couplers. The designed pulse generator was fabricated using PCB process. The fabricated pulse generator draws 1 mA current from a 5 V power supply with 27.6 % efficiency. The measured output voltage swing is $3.7V_{pp}$ at 100 MHz pulse repetition frequency(PRF). The pulse width is 2 ns and the input and output return loss is more than 10 dB at the operating frequency of 1.7~2.6 GHz.