• 제목/요약/키워드: Pulse Electrochemical

검색결과 180건 처리시간 0.025초

구연산을 이용한 스테인레스 스틸의 미세 전해가공 (Micro Electrochemical Machining of Stainless Steel Using Citric Acid)

  • 류시형
    • 한국정밀공학회지
    • /
    • 제25권3호
    • /
    • pp.134-140
    • /
    • 2008
  • Micro electrochemical machining (ECM) is conducted on stainless steel 304 using non-toxic electrolyte of citric acid. Electrochemical dissolution region is minimized by applying a few hundred second duration pulses between the tungsten SPM tip and the work material. ECM characteristics according to citric acid concentration, feeding velocity and electric conditions such as pulse amplitude, pulse frequency, and offset voltage are investigated through a series of experiments. Micro holes of $60{\mu}m$ in diameter with the depth of $50{\mu}m$ and $90{\mu}m$ in diameter with the depth of $100{\mu}m$ are perforated. Square and circular micro cavities are also manufactured by electrochemical milling. This research can contribute to the development of safe and environmentally friendly micro ECM process.

마이크로 펄스 전해 복합가공에 관한 연구 (Study on the new development of combined electrochemical processes using pulse current)

  • 박정우;이은상;문영훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.918-921
    • /
    • 2002
  • Some investigators who have tried to achieve the highly smooth surface finish using electrochemical processes have reported that high current density produced lustrous surfaces while the opposite conditions produced a passive layer and had a tendency to produce a black surface. However, processing at a low current density may produce a non-lustrous surface but the improvement of dimensional accuracy of the surface is significant. The surface with pulse process was a bit more lustrous than with continuous current but the black passive layer still could be found at grooved surface. There are two ways to achieve highly smooth surface finish. One is brushing it with a brush the other is electrochemical machining (ECM) with high current. The former method is the most common polishing practice, but not only may the surface obtained differ from operator to operator, but precision smooth surface on micro grooves are difficult to obtain. The latter one recently has been used to produce a highly smooth surface after EDM process. However, the material removal rate in ECM with high current is relatively high. Hence the original shape of the micro grooves, which was formed by electrochemical micro-machining (EMM) process, may be destroyed. In this study, an electrochemical polishing process using pulse current is adopted as a possible alternative process when micro grooves formed by EMM process should be polished. Mirror-like micro grooves with lustrous and smooth surface can be produced electrochemically with pulse current because the voltage and current used can be lower than the case of continuous current. This study will discuss the accurate control of physical and electrical conditions so as to achieve mirror-like micro grooves with lustrous and smooth surface without destroying the original shape of micro grooves.

  • PDF

펄스전해가공을 이용한 인바 박판의 가공 형상 및 Overcutting 현상에 관한 연구 (A Study on Processing Shape and Overcutting of Invar Sheet by Pulse Electrochemical Machining)

  • 양부열;김성현;최승건;최웅걸;전광호;이은상
    • 한국생산제조학회지
    • /
    • 제24권3호
    • /
    • pp.314-319
    • /
    • 2015
  • Invar is a compound metal of Fe-Ni system contained 36.5% Ni. The characteristic of invar is that the coefficient of thermal expansion is $1.0{\times}10^{-6}cm/^{\circ}C$. It is approximately 10 times smaller than series of steel. Because of this low thermal expansion characteristic of Invar, it is used to shadow mask of display device such as UHDTV or OLED TV. In this study, pulse current from pulse generator instead of DC current is used to overcome the disadvantages of the conventional electrochemical machining. Pulsed current with different duty factor in PECM affect the precise geometry. Pulse electrochemical machining is conducted to machine the micro hole to the invar sheet with different duty factor. The machined shape and overcut of invar sheet with different duty factor is observed by optical microscope and scanning electron microscope (SEM).

Electrochemical Study on the Coumarin Derivatives

  • Kim, Il Kwang;Chun, Hyun Ja;Paik, Soon Ok;Park, Sung Woo
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.655-661
    • /
    • 1995
  • The electrochemical reduction of coumarin derivatives in 0.1M TEAP acetonitrile solution was investigated by the direct current, differential pulse polarography, cyclic voltammetry and controlled potential coulometry. The electrochemical reduction of 7-acetoxy-4-bromomethyl-coumarin(ABMC) was proceeded as an irreversible three steps(-0.58, -1.63 and -2.25 volts) of electrochemical transfer before chemical reaction. The solution color turned to yellow after the carboxyl group was reduced at 2nd step(-1.63 volts vs. Ag-AgCl) and the change in color was independant to the bromo group. Upon the basis of the results on the products analysis and the interpretaton of polarograms, a possible electrochemical reaction mechanism was suggested.

  • PDF

펄스 전착법을 이용한 전기분해용 망간 산화물 전극의 제조 및 특성 (Characteristics and Preparation of Manganese Oxide Electrode by Using Pulse Voltammetry Electrodeposition for Electrolysis)

  • 양정진;이미영;김정식;신현수;박수길
    • 전기화학회지
    • /
    • 제13권2호
    • /
    • pp.138-144
    • /
    • 2010
  • 망간 산화물이 전착된 전기분해용 전극의 전기화학적 특성을 조사하기 위해 펄스 전위차 방법을 이용하여 티타늄 망 표면에 망간 산화물을 전착하였다. 전착된 망간 산화물을 확인하기 위해 EDX 분석과 SEM 분석을 실시하였다. 또한 제조된 전극의 EIS 측정을 실시하여 전기화학적 특성을 관찰하였다. 티타늄 망에 펄스 1cycle의 인가 시간이 증가함에 따라 티타늄 망 표면에 형성되는 망간 입자 크기는 증가 하였으며, 10 ms의 펄스 인가 시간에서 응집이 발생하여 약 100 nm 크기의 망간 산화물 불균일 상이 형성되는 것을 SEM으로 관찰하였다. 다양한 조건으로 제조한 전극들은 EIS 측정을 통해 과전위 부근에서 나타나는 전자이동저항($R_{ct}$, Charge transfer resistance)을 평가하였고, Tafel plot을 이용하여 제조된 전극이 갖는 과전위를 계산하여 전기분해용 전극으로서의 가능성을 모색하였다.

펄스 전기화학 복합가공기술을 적용한 미세 그루브 가공 (Machining of Micro Grooves using Hybrid Electrochemical Processes with Voltage Pulses)

  • 이은상;박정우;문영훈
    • 한국정밀공학회지
    • /
    • 제20권9호
    • /
    • pp.32-39
    • /
    • 2003
  • Pulse electrochemical machining process with high or low current density may produce a non-lustrous surface on workpiece surface. The usual polishing process to remove a black layer from the surface has been hand polish the part. But the milli-to-micro meter scale structure formed by the electrochemical machining process may be destroyed while polishing process. The application of ultra short voltage pulses based on the analysis of electrical double layer charging process allows high resolution electrochemical machining and polishing. This technique was based on the specific polarization resistance from the comparison of ideal and experimental potential variation during short voltage pulses.

AFM 기반 Pulse 를 이용한 전기화학적 가공 (Localized Oxidation of (100) Silicon Surface by Pulsed Electrochemical Processes Based on AFM)

  • 이정민;김선호;박정우
    • 대한기계학회논문집A
    • /
    • 제34권11호
    • /
    • pp.1631-1636
    • /
    • 2010
  • 본 연구는 AFM 을 이용하여 nano scale 의 Lithography 를 구현하는 것이다. 외부의 pulse generator 를 통하여 전류를 통전 시키는 방법을 수정함으로써, 일정 습도를 유지한 상태의 AFM 내부에서 Si-wafer 의 표면과 Tip의 사이에 전원을 인가하고 pulse generator 에서 임의로 pulse 폭의 변화를 준다. Si-wafer 표면에서 물 분자가 Tip과 wafer 사이의 직접적인 전류의 이동조절로 인해 전기 화학적 반응을 적절히 제한하여 산화물을 생성시키는 방법이다. 이렇게 생성된 산화물은 불산 처리를 통하여 산화물을 식각시켜 미세 그루브를 구현 할 수 있다. 본 연구를 통한 나노 패턴 생성 기법은 나노 머시닝 기술의 진보에 잠재적 가능성을 제시한다.

Size-Controlled Cu2O Nanocubes by Pulse Electrodeposition

  • Song, You-Jung;Han, Sang-Beom;Lee, Hyun-Hwi;Park, Kyung-Won
    • 전기화학회지
    • /
    • 제13권1호
    • /
    • pp.40-44
    • /
    • 2010
  • In this work, highly uniform size-controlled $Cu_2O$ nanocubes can be successfully formed by means of pulse electrodeposition. The size distribution, crystal structure, and chemical state of deposited $Cu_2O$ nanocubes are characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The phase transition from $Cu_2O$ to Cu can be controlled by constant current electrodeposition as a function of deposition time. In particular, the size of the $Cu_2O$ nanocubes can be controlled using pulse electrodeposition as a function of applied current density.

Coumarin 유도체들의 전기화학적 환원과 형광성의 증강 (Enhancement of Fluorescent Properties and Electrochemical Reduction of Coumarin Derivatives)

  • 천현자;김성현;정은주;이혜숙;김일광
    • 분석과학
    • /
    • 제18권1호
    • /
    • pp.89-95
    • /
    • 2005
  • Studies on the electrochemical reduction of 7-acetoxy-4-bromomethyl-coumarin (ABMC), 7-acetoxymethyl coumarin (AMC), and coumarin in 0.1 M tetraethyl ammonium perchlorate acetonitrile solution were carried out with direct current, differential pulse polarography, cyclic voltammetry, and controlled potential coulometry. The electrochemical reduction of ABMC was proceeded through three irreversible steps coupled with the chemical reactions. The solution color was changed to yellow when the carbonyl group was reduced during second step and the color change was independent with bromo group of ABMC. Fluorescent intensity was highest when the electrochemical reduction was controlled at near the overpotential of supporting electrolyte (-2.3 volts).