• Title/Summary/Keyword: Pulsation Ratio

Search Result 53, Processing Time 0.035 seconds

Numerical Investigation of the Flow Pulsation in the Gap connecting with Two Parallel Channels with Different Cross-section Areas (크기가 다른 단면을 가진 평행한 두 채널을 연결하는 협소유로의 맥동유동에 관한 수치해석)

  • Seo, Jeong-Sik;Hong, Seong-Ho;Shin, Jong-Kuen;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2810-2815
    • /
    • 2008
  • Flow pulsation in the gap connecting with two parallel channels is investigated by RANS and URANS approaches. The two parallel channels are connected by a small channel called for a gap. The parallel channels are designed to have different cross section area with its ratio of 0.5. Computations are conducted using a CFX 11.0 code. The bulk Reynolds number is 60,000. Predicted results are compared with the previous experimental result. Mean velocity profile at the center of gap region are compared with experiments for its validation. Spectral analysis on the lateral velocity in the center of the gap is presented. Auto and cross correlation for the axial-flow velocity pattern are presented. The unsteady structure of the flow pulsation was visualized in the region of the gap in the parallel channel.

  • PDF

Effect of the Reflectivity of Both Facets and the Phase of a Phase Tuning Section on the Yield Characteristics of a Multisection Complex-Coupled DFB Laser with Self-Pulsation Frequency of THz Region (양 단면 반사율과 위상 조정 영역의 위상이 Self-Pulsation 주파수가 THz 대역인 다중 영역 Complex-Coupled DFB 레이저의 수율 특성에 미치는 영향)

  • Kim, Tae-Young;Park, Jae-Woo;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.3
    • /
    • pp.208-218
    • /
    • 2008
  • We investigate the effect in terms of yield of the reflectivity of both facets and of the phase of a phase tuning section on the self-pulsation (SP) characteristics of multisection complex-coupled (CC) DFB lasers with self-pulsation frequency of the THz region. When the grating phases on both facets of a multisection CC DFB laser are fixed as 0, the variation of SP frequency increases as the reflectivity of both facets increases, while that of SP frequency decreases as the coupling ratio (CR) and the coupling strength increase. For the coupling strength of 3, the range of the phase of a phase tuning section with yields greater than 80% decreases as the CR and the reflectivity of both facets increases. For the coupling strength of 4, the range of the phase of a phase tuning section with yields greater than 80% increases as the CR and the reflectivity of both facets increases.

A robust identification of single crack location and size only based on pulsations of the cracked system

  • Sinou, Jean-Jacques
    • Structural Engineering and Mechanics
    • /
    • v.25 no.6
    • /
    • pp.691-716
    • /
    • 2007
  • The purpose of the present work is to establish a method for predicting the location and depth of a crack in a circular cross section beam by only considering the frequencies of the cracked beam. An accurate knowledge of the material properties is not required. The crack location and size is identified by finding the point of intersection of pulsation ratio contour lines of lower vertical and horizontal modes. This process is presented and numerically validated in the case of a simply supported beam with various crack locations and sizes. If the beam has structural symmetry, the identification of crack location is performed by adding an off-center placed mass to the simply supported beam. In order to avoid worse diagnostic, it was demonstrated that a robust identification of crack size and location is possible if two tests are undertaken by adding the mass at the left and then right end of the simply supported beam. Finally, the pulsation ratio contour lines method is generalized in order to be extended to the case of rectangular cross section beams or more complex structures.

KIC 6220497: A New Algol-type Eclipsing Binary with δ Sct Pulsations

  • Lee, Jae Woo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.41.1-41.1
    • /
    • 2016
  • We present the physical properties of KIC 6220497 exhibiting multiperiodic pulsations from the Kepler photometry. The light curve synthesis represents that the eclipsing system is a semi-detached Algol with a mass ratio of q=0.243, an orbital inclination of i=77.3 deg, and a temperature difference of ${\Delta}T=3,372K$, in which the detached primary component fills its Roche lobe by ~87% and is about 1.6 times larger than the lobe-filling secondary. To detect reliable pulsation frequencies, we analyzed separately the Kepler light curve at the interval of an orbital period. Multiple frequency analyses of the eclipse-subtracted light residuals reveal 32 frequencies in the range of $0.75-20.22d^{-1}$ with semi-amplitudes between 0.27 and 4.55 mmag. Among these, four frequencies ($f_1$, $f_2$, $f_5$, $f_7$) may be attributed to pulsation modes, while the other frequencies can be harmonic and combination terms. The pulsation constants of 0.16-0.33 d and the period ratios of $P_{pul}/P_{orb}=0.042-0.089$ indicate that the primary component is a ${\delta}$ Sct pulsating star in p modes and, thus, KIC 6220497 is an oscillating eclipsing Algol (oEA) star. The dominant pulsation period of about 0.1174 d is considerably longer than the values given by the empirical relations between the pulsational and orbital periods. The surface gravity of log $g_1=3.78$ is significantly smaller than those of the other oEA stars with similar orbital periods. The pulsation period and the surface gravity of the pulsating primary demonstrate that KIC 6220497 would be the more evolved EB, compared with normal oEA stars.

  • PDF

The Effects of Pulsating Flow on Volumetric Efficiency in the Intake and Exhaust System in a Turbocharged Diesel Engine (흡.배기 시스템의 맥동류가 과급디젤기관의 체적효율에 미치는 영향)

  • Kim, K.H.;Kang, H.Y.;Koh, D.K.
    • Journal of Power System Engineering
    • /
    • v.13 no.4
    • /
    • pp.11-17
    • /
    • 2009
  • This paper deals with the effects of pulsating flow on volumetric efficiency, which may be generated during the gas exchange procedure, due to piston motion, valve event on intake and exhaust stroke and unsteady flow of turbocharger of a three-cylinder four stroke turbo-charged diesel engine. Consequently, volumetric efficiency affects significantly the engine performance; torque characteristics, fuel economy and further to emission and noise level. As the expansion ratio became larger the engine speed varies and torque increases, the pressure pulsation in an exhaust gas pipe acts as an increasing factor of intake air charging capacity totally. The phase and amplitude of pressure pulsation in the intake system only affects volumetric efficiency favorably, if it is well matched and tuned effectively to the engine. Thus, to verify the exact phase and amplitude of the pressure variation is the ultimate solution for the air-flow ratio assessment in the intake stroke. Some experimental results of pressure diagrams in the intake pipe and gas-flow of turbine in-outlet are presented, under various kinds of operating condition.

  • PDF

Comparison of Accuracy and Output Waveform of Devices According to Rectification Method (정류방식에 따른 장치의 정확도와 출력 파형의 비교)

  • Lee, In Ja
    • Journal of radiological science and technology
    • /
    • v.41 no.6
    • /
    • pp.603-610
    • /
    • 2018
  • This study examined the following: accuracy of the exposure conditions in the inverter device and three-phase device; output waveform over the exposure conditions; and average and standard deviation of the output waveform. After assessing whether the dose corresponding to the theoretical dose was presented, the following conclusions were obtained: 1. The accuracy of the tube voltage(kVp) and tube current(mA) exposure time(sec) was within the tolerable level prescribed in Korea's Safety Management Standards. In the error, Inverter device was large the tube voltage and exposure time, the three-phase device was large the tube current. 2. In terms of the output waveform of the exposure conditions and the average and standard deviation of the output waveform, the higher tube voltage and larger tube current resulted in greater standard deviation in pulsation. Moreover, the standard deviation of pulsation was shown to be greater in the inverter device than the three-phase device; there was also greater standard deviation in the inverter device considering the exposure time. 3. Regarding the exposure conditions over the output dose, all linearity showed the coefficient of variation which had an allowable limit of error within 0.05. Although the output dose ratio for the inverter device was 1.00~1.10 times no difference that of the three-phase device, there was almost no difference in dose ratio between the tube currents.

Electrical Breakdown Strength of Insulation under Combined DC-AC Voltages

  • Grzybowski, S.
    • Electrical & Electronic Materials
    • /
    • v.11 no.10
    • /
    • pp.32-39
    • /
    • 1998
  • Electrical breakdown strength of paper-oil and polypropylene/film-oil insulation samples was measured under dc, ac and pulsating voltages. The latter was obtained by superimposing ac upon dc volate and provides an attractive method for a simultaneous testing and assessment of the state of insulation of the various parts of HV apparatus in service. The measurements were carried out over a wide range of the pulsation ratio defined as p=Eac/Edc. The results obtained under pulsating voltages follow colsely an experssion which relates the breakdown strength to the sum of arc tangent and arc cotangent function of the parameter p. The study was carried out using dry paper as well as paper containing various degrees of moisture. The presence of moisture showed a pronounced effect upon the breakdown strength which varied with the pulsation parameter p.

  • PDF

PIV Analysis of a Pulsating Flow through a Square Channel

  • SAGA Tetsuo;UEDA Toshiyuki;TANIGUCHI Nobuyuki
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.157-168
    • /
    • 2004
  • The effects of pulsation in a pulsating flow through a rectangular channel have been investigated by Particle Image Velocimetry in both laminar and turbulent flow conditions. PIV results on a square channel (aspect ratio:1) have been reported on the cases of Reynolds number Re=80 in laminar and Re=8800 in turbulent region. For both in the laminar and turbulent regions, the influence of the pulsation onto the magnitude changes of the average velocity was negligible. In the turbulent region, the magnitude profiles of the stream-wise pulsating component obtained by the theoretical analysis based on the Stokes analogy were slightly different from the experimental ones due to the influence of the turbulent viscosities onto the pulsating flows.

  • PDF

Characteristics of Electromagnetic Forces of a Single winding EDS MAGLEV System (단일권선으로 구성된 반발식 자기부상시스템의 전자력특성)

  • Hong, Soon-Heum;Cha, Guee-Soo;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.62-64
    • /
    • 1995
  • This paper describes the characteristics of electromagnetic forces of Combined superconducting maglev system. Generation of the levitation, the propulsion and the guidance force by a single coil is proved by the phasor- analysis. It is also shown that double-layered configuration has better characteristics in efficiency, pulsation of the forces and drag ratio than single-layered configuration.

  • PDF

A Study on The Pulsating Combustion of Premixed Gas in a Tube with a Honeycomb (다공성 물질에 의한 예혼합기의 맥동연소에 관한 연구)

  • 권영필;이동훈;현길학
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.676-684
    • /
    • 1990
  • This study is on the pulsating combustion of premixed gas in a Rijke type combustor made of a honeycomb flame holder in a tube. Modelling for the onset condition of the oscillation is made by the ratio of the acoustic power generation based on the analysis of heat transfer to the power loss due to the thermoviscous dissipation and radiation. Experiment is performed for the characteristics of acoustic, thermal and combustion. It is shown that the theoretical modelling for the oscillation may be used as a limit condition. And the combustion analysis for the acoustic power generation is needed for better prediction of the onset condition. Experimental result shows that, by pulsation, the flame length is shortened and the flame temperature is decreased with increase in the heat transfer coefficient. The NO$_{x}$ concentration in the exhaust gas is significantly reduced by pulsation and the concentration of unburned hydrocarbon shows a little increase.e.