• Title/Summary/Keyword: Pulsation Pressure

Search Result 230, Processing Time 0.024 seconds

SELF-PULSATION CHARACTERISTICS OF A SWIRL COAXIAL INJECTOR WITH VARIOUS INJECTION AND GEOMETRIC CONDITIONS

  • Im, Ji-Hyuk;Kim, Dong-Jun;Yoon, Young-Bin;Bazarov, V.
    • Journal of ILASS-Korea
    • /
    • v.10 no.3
    • /
    • pp.29-37
    • /
    • 2005
  • The spray and acoustic characteristics of a gas/liquid swirl coaxial injector are studied experimentally. The self-pulsation is defined as a pressure and flow rate oscillations by a time-delayed feedback between liquid and gas phase. Self-pulsation has strong influences on atomization and mixing processes and accompanies painful screams. So. the spray and acoustic characteristics are investigated. Spray patterns are observed by shadow photography technique in order to determine the onset of self-pulsation. And self-pulsation boundary with Injection conditions and recess length is get. To measure the frequency of the spray oscillation. oscillation of the laser intensity which passes through spray is analyzed by Fast Fourier Transform. For acoustic tests, a PULSE System was used. Acoustic characteristics of a swirl coaxial injector are investigated according to the injection conditions. such as the pressure drop or the liquid and gas phase. and injector geometries. such as recess length and gap size between the inner and outer injector. Front the experimental results. the increase of recess length leads to the rapid increase of the sound pressure level. And as the pressure drop of the liquid phase increases. the frequency of the self?pulsation shifts to the higher frequency. The frequency of spray oscillations is the same as that of the acoustic fields by self-pulsation.

  • PDF

Numerical Simulation and Experiment of Pressure Pulsation in Kaplan Turbine

  • Yang, Wei;Wu, Shangfeng;Liu, Shuhong;Wu, Yulin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.729-731
    • /
    • 2008
  • Three-dimensional unsteady simulation using RNG $\kappa-\varepsilon$ turbulence model is used in full flow passage of model Kaplan turbine. Then the pressure pulsation is obtained. Monitoring data of pressure pulsation in the turbine is obtained through experiment and is compared with the numerical simulation. And a good coherence is shown between the simulation and the experiment. Then the regularity of the pressure pulsation s distribution and transmission in the turbine is discussed in detail.

  • PDF

Review on Floating Pulse and Sinking Pulse in the View Point of Tonometric Measurement (토노메트리 측정 관점에서의 부침맥 고찰)

  • Lee, Jeon;Lee, Yu-Jung;Ryu, Hyun-Hee;Lee, Hae-Jung;Kim, Jong-Yeol
    • Korean Journal of Oriental Medicine
    • /
    • v.14 no.2
    • /
    • pp.113-119
    • /
    • 2008
  • In pulse diagnosis, floating pulse and sinking pulse are frequently used for diagnosis about where disease is located and how much severe they are. However, in what mechanism floating pulse and sinking pulse arise is not known well. There are two point of views on substantial of floating pulse and sinking pulse. The first one is the floating and sinking degrees is the expression on the depth of pulsation. And, the second one is floating and sinking pulse is based on the response of pulsation to the indent pressure on radial artery. In this paper, we discussed these two opinions in the view point of tonometric measurement. The process for diagnosis on floating pulse and sinking pulse is similar to the tonometric measurement for non invasive blood pressure or intraocular pressure. We modelled the degrees of depth of pulsation with different indent pressures for initial pulsation feeling and different slopes of indent pressure lines. From this modelling, we can confirm the effect of pulsation depth on P-H curve, that is, in the model where lower pulsation is assumed, the shift of optimal indent pressure to the right was observed. The response of pulse pressure to the indent pressure was tried to be modelled with the degrees of mean blood pressure. Consequently, we tried to model the phenomenon of floating and sinking pulse for the first. And, from this modelling, we can get abundant understanding on how floating and sinking pulse can be caused. In the further study, we want to prove the suitability of this tonometric measurement based modelling with various studies including ultrasound measurement for the depth of pulsation in different EMI subjects.

  • PDF

Fluid-Structure Interaction Analysis of Pressure Pulsation in a Suction Pipe of Compressor (압축기 흡입배관 압력 맥동의 유체-구조 연성 해석)

  • Oh, Han-eum;Jeong, Weui-Bong;Ahn, Se-Jin;Kim, Min-sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.779-780
    • /
    • 2014
  • This paper dealt with numerical estimation of pressure pulsation of the refrigerant in a suction pipe of the compressor. To evaluate the effect of reduction of pressure pulsation, a pipe system with tube was simulated using F.S.I.(Fluid-structure interaction) analysis. A commercial program was used for calculating behavior of pressure. The numerical simulation for pressure ratio of before and after going though internal structure were carried out. As a result, it was verified that the pressure after passing structure is less than the pressure before passing internal structure depending on the longitudinal frequency of structure.

  • PDF

Numerical Study on the Characteristics of Pressure Pulsations according to Design Factors of Fuel Rail with Self Damping Effect (자체 맥동 감쇠 효과를 갖는 연료레일의 오일 해머 및 분사 특성에 따른 압력맥동 시뮬레이션)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Lee, Heon-Kyun;Lee, Gee-Soo;Hwang, Jae-Soon;Lee, Dong-Eun;Kim, Hyung-Chul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.332-336
    • /
    • 2008
  • A pulsation damper is usually mounted on the fuel rail to diminish undesirable noise in the vehicle cabin room. However, pulsation dampers are quite expensive. Therefore, several studies have focused on reducing fuel pressure pulsations by increasing the self-damping characteristics of the fuel rail. This paper is a basic study in the development of a fuel rail that can reduce pulsations via a self-damping effect. In this study, the pressure pulsation characteristics were of investigated with respect to the aspect ratio of the cross section, wall thickness, and fuel rail material through oil hammer simulations. An oil hammer simulation was performed in advance to simulate the pressure pulsations at the resonant speed, which is a time-saving way. The pressure pulsation peak of fuel rail was observed to rise as the injection period increases. Increase of the aspect ratio and decrease of the wall thickness can reduce the pressure pulsation efficiently.

  • PDF

Effects of gas pulsation in the suction line of a hermetic reciprocating compressor on th compressor performance (밀폐형 왕복동 압축기에서 흡입라인 가스맥동이 압축기 성능에 미치는 영향)

  • Lee, Yong-Ho;Kim, Hyun-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.404-409
    • /
    • 2007
  • For a hermetic reciprocating compressor, it has been known that the gas pulsation in the suction line affects the compressor performance, and suction muffler design has been focused on both of noise reduction and minimum pressure drop across the muffler. Some studies have been carried out on the mutual interaction between the gas pulsation and the cylinder pressure to investigate some supercharging effects, but their efforts were limited on rather simple geometries. In this paper, interaction of the gas pulsation in the compressor suction line with cylinder pressure via suction valve motion has been calculated; for the gas pulsation analysis, modeling of Helmholtz resonators in series was used, and for cylinder pressure calculation, energy equations was set up for the gas inside the cylinder. For demonstration of this calculation method, four different types of suction line configurations for a hermetic reciprocating compressor were compared in terms of compressor performance and gas pulsation level.

  • PDF

A Study on Vibration Control for Reheater Attemperator Piping in Power Plant (재열기 온도조절 급수배관의 진동저감방안 연구)

  • Jeon, Chang-Bin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1-5
    • /
    • 2007
  • A majority of piping vibration problems are induced by internal fluid pulsation; turbulent flow, vortex shedding at internal discontinuities, and pressure pulsation at equipment nozzles. The pulsation at the pressure sources resonates acoustically with the piping and the amplified pressure pulsation can generate shell mode vibration in the piping. Reheater attemperator piping supplies water from feedwater pump to reheater attemperator to control the boiler temperature. In normal operating condition, the high frequency shell mode vibration occurred in the piping with the high level of sound(105 ${\sim}$ 117 dB). The vibration sources are pressure pulsation in the pump nozzle and the frequencies are related to the blade passing frequencies. The objects of this paper are to analyze the cause of the high frequency vibration and to establish corrective actions.

  • PDF

Study of Pressure and Flux Pulsation to Design Optimum Valve-Plate Notch and Pulsation-Variables Analysis of Swash-Plate-Type Piston Pump (가변 사판식 피스톤펌프의 맥동 변수 분석 및 최적 밸브플레이트 노치 설계를 위한 압력 및 유량맥동에 관한 연구)

  • Bae, Jun-Hyeong;Chung, Won-Jee;Jang, Jun-Ho;Yoon, Young-Hwan;Jeon, Ju-Yeol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.244-250
    • /
    • 2015
  • We propose a simulation technique to estimate the reduction effect of the pressure/flow pulsation by analysis of the pulsation variables and notch shape of the valve plate of a swash-plate-type variable piston pump. First, using SimulationX$^{(R)}$, we perform a theoretical kinematic analysis according to the variable swash-plate angle and rotational velocity in order to design a single-piston pump. In designing the notch shape of the valve plate of the swash-plate-type variable piston pump as one of the pulsation variables, we investigate the effect of the pulsation by comparing two notch types (circular type and V type). Then, we extend our analysis to a nine-piston pump model. This paper not only confirms the effect of the pressure/flow pulsation according to pulsation variables but can also be applied to the development of a SimulationX$^{(R)}$-based simulation technique for notch-shape optimization for a swash-plate-type variable piston pump.

Numerical prediction of pressure pulsation amplitude for different operating regimes of Francis turbine draft tubes

  • Lipej, Andrej;Jost, Dragica;Meznar, Peter;Djelic, Vesko
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.375-382
    • /
    • 2009
  • Hydraulic instability associated with pressure fluctuations is a serious problem in hydraulic machinery. Pressure fluctuations are usually a result of a strong vortex created in the centre of a flow at the outlet of a runner. At every radial turbine and also at every single regulating axial turbine, the draft tube vortex appears at part-load operating regimes. The consequences of the vortex developed in the draft tube are very unpleasant pressure pulsation, axial and radial forces and torque fluctuation as well as turbine structure vibration. The consequences of the vortex are transferred upstream and downstream with amplitude and frequency modulation in respect of the turbine operating regime, cavitation conditions and air admitted content. Numerical prediction of the vortex appearance in the design stage is a very important task. The amplitude of the pressure pulsation is different for each operating regime therefore the main goal of this research was to numerically predict pressure pulsation amplitude versus different guide vane openings and to compare the results with experimental ones. For the numerical flow analysis of a complete Francis turbine (FT), the computer code ANSYS-CFX11 has been used.

Modeling of flux enhancement in presence of concentration polarization by pressure pulsation during laminar cross flow ultrafiltration

  • Kumar, Kamal;De, Sirshendu
    • Membrane and Water Treatment
    • /
    • v.1 no.4
    • /
    • pp.253-271
    • /
    • 2010
  • A theoretical study for the flux enhancement by pulsation of transmembrane pressure is presented for osmotic pressure controlled ultrafiltration under laminar flow regime. The transient velocity profile is solved analytically using Green's function method. Time dependent convective diffusive equation is solved to quantify the membrane surface concentration and the permeate flux, numerically. The effects of the amplitude and frequency of pulsation on flux, surface concentration and observed retention are studied.