• Title/Summary/Keyword: Pulsation

Search Result 588, Processing Time 0.021 seconds

A Study on the Pulsation Characteristics of ESP Hydraulic Modulator (자동차 ESP 유압 모듈레이터의 수격 특성에 관한 연구)

  • Kim, Byeong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.3869-3875
    • /
    • 2012
  • In this study, mathematical modeling and experimental analysis were executed in order to evaluate the valve dynamic characteristics when the hydraulic pressure applied. High pressure on the master cylinder effects on the valve dynamic characteristics have been analyzed. The pulsation pressure generated in hydraulic systems causes noise, vibration and odd effect to the system. To reduce the pulsation pressure, high frequency PWM control of 20KHz was attempted. Also, an analytic method is proposed for the resultant forces of electromagnetism and hydraulic pressure generated in the real vehicle electro stability program. Consequently, results of solenoid valve dynamic characteristics analysis derived in the study can be confirmed criteria for the optimal control of electronic stability program system.

Acoustic Investigation on BFP Piping System in a Power Plant (발전소 급수용 펌프 배관계의 음향학적 현상 고찰)

  • Yang, K.H.;Cho, C.H.;Bae, C.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.11
    • /
    • pp.1029-1035
    • /
    • 2011
  • Pressure pulsation of exciting sources that generally occurs on the piping system connected to the discharge of BFP(boiler feed water pump) in power plants causes wave reflection, wave interference, resonance, standing wave and so on. But if the operating speed of the pump is changed, the state of the noise and vibration can be done because characteristics of the exciting source are changed. This paper is to investigate the cause of the noise and vibration occurring on the piping system when the operating speed of BFP is down in accordance with lowering of the power generation. It is approached to two points of view ; Firstly, it is examined whether the pulsation source impacts on the shell mode vibration that vibrates radially across the cross-section of the pipe. But it doesn't affect the shell mode as much as the resonance occurs. Secondly, to find the relation between the pulsation source and the acoustic mode of the piping system, analysis for the piping system by indirect BEM(boundary element method) is carried out. Therefore it is investigated that the mechanism of the noise and vibration relates with acoustic mode of the piping system.

Control Strategy of Improved Transient Response for a Doubly Fed Induction Generator in Medium Voltage Wind Power System under Grid Unbalance (계통 불평형시 과도 응답 특성이 개선된 고압 이중여자 유도형 풍력발전 시스템의 제어 전략)

  • Han, Dae-Su;Suh, Yong-Sug
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.91-103
    • /
    • 2015
  • This paper investigates control algorithms for a doubly fed induction generator with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage wind power system under unbalanced grid conditions. Negative sequence control algorithms to compensate for unbalanced conditions have been investigated with respect to four performance factors: fault ride-through capability, instantaneous active power pulsation, harmonic distortions, and torque pulsation. The control algorithm having zero amplitude of torque ripple indicates the most cost-effective performance in terms of torque pulsation. The least active power pulsation is produced by a control algorithm that nullifies the oscillating component of the instantaneous stator active and reactive power. A combination of these two control algorithms depending on operating requirements and depth of grid unbalance presents the most optimized performance factors under generalized unbalanced operating conditions, leading to a high-performance DFIG wind turbine system with unbalanced grid adaptive features.

Effect of Snubber-Array on Variation of Pressure Characteristics in Reciprocating Hydrogen Compression

  • Chung, Han-Shik;Rahman, M. Sq.;Lee, Gyeong-Hwan;Jin, Zhenhua;Kim, Jeong-Hyeon;Jeong, Hyo-Min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.1034-1043
    • /
    • 2009
  • Hydrogen energy is becoming popular day by day due to its renewability and pollutaaant free natures. Hydrogen gas pressure which is after passing through reciprocating compressor part has high pulsation wave form. A unit, snubber is used as compressor components to reduce the harmful pulsation waveform and to remove the impurities in the hydrogen gas. An experiment has been conducted to investigate the pulsation reduction performance of different arrangement of snubber i.e. snubber array used in reciprocating compression system. Analyzing the snubber array experimental data, it is found that the pressure fluctuations are reduced from 90.1977% ~ 92.6336% with pressure loss 1.5013% ~ 4.9034% for compressor operation at different speed which ensure the good performance of snubber-array as pulsation damper in hydrogen compressing system.

CFD and Experimental Study of Gas Flow Inside the Steel Pipe Fitted in Reciprocating Hydrogen Compression System (왕복동식 압축시스템에 연결된 파이프 내부의 유동특성에 관한 CFD와 실험)

  • Rahman, Mohammad-Shiddiqur;Lee, Gyeong-Hwan;Lee, Kwang-Sung;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1513-1520
    • /
    • 2009
  • Renewability and pollutant free energy source makes hydrogen energy popular rapidly. Hydrogen gas pressure which is after passing through reciprocating compressor part has high pulsation wave form. A unit, snubber is used as compressor components to reduce the harmful pulsation waveform and to remove the impurities in the hydrogen gas. An experiment has been conducted to investigate the pulsation reduction performance of a steel pipe used in snubber system. The amplitude of pressure reduction were varied from $0.054{\sim}0.321\;kPa$ for 10 hz to 60 hz motor speed. Compressor operation by motor with 10 to 60 hz were resulted in reduction of pressure pulsation from 16.415% to 35.151%. Pressure losses were varied from $0.001%{\sim}0.759%$, and pressure drop per centimeter of the steel pipe were varied from $0.0160{\sim}16.03\;Pa$.

  • PDF

A New Concept of Hydraulic Design of Water Turbine Runners

  • Vesely, Jindrich;Pochyly, Frantisek;Obrovsky, Jiri;Mikulasek, Josef
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.383-391
    • /
    • 2009
  • Vibrations at different frequencies with a different intensity as well as a pressure pulsation with different parameters are two phenomena which can be observed at different water turbines. Due to the vibration and the pressure pulsation some restrictions of water turbine operation range are applied. Similar problems with the efficiency level in a wide water turbine operation range are the basic problems which are solved for ages. A theoretical and practical solution of the above mentioned problems is very much time and money consuming. The paper describes a new theoretical solution of the excitation and pressure pulsation decrease as well as extension of the operational range with high efficiency level. The new concept to decrease the vibrations and pressure pulsations is based on a heterogeneous runner blade geometry generation. The new concept of the runner geometry design was numerically tested at a low specific speed pump turbine, see Fig. 1, and basic points of the concept are presented in this paper.

Study on the Pressure Variation in a Chamber Caused by Pulsation Pressure (맥동압을 가지는 챔버내의 압력변화에 관한 연구)

  • Yi, Chung-Seub;Shim, Kyu-Jin;Akbar, Wanda Ali;Chung, Han-Shik;Jeong, Hyo-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.132-138
    • /
    • 2007
  • Experimental results of pulsating pressure behavior inside a chamber have been confirmed by computational work. Inside-cylinder pressure shows unstable condition at low rpm. This is caused by plate-type suction valve. It has effect up to inlet of the chamber. But trembling phenomenon is reduced as the pressure is enlarged by increasing the rpm. Result comparison between experimental and numerical analysis shows pulsation reduction is affected by the chamber. We can confirm that compressible effect of the working flow is shown at chamber inlet by increasing rpm. On the other side, this effect is declined at chamber outlet by increasing rpm. It means outlet pressure is going on balance with atmosphere pressure. Buffer plate-type chamber has efficiency of pulsation flow reduction.

A Study on Dynamic Characteristics of Gas Centered Swirl Coaxial Injector Varying Tangential Inlet Diameter with Liquid Pulsation (기체 중심 동축형 분사기의 접선방향 유입구 지름 변화에 따른 액체 가진 연구)

  • Oh, Sukil;Park, Gujeong;Kim, Seongju;Lee, Hyeongwon;Yoon, Youngbin;Choi, Jeong-Yeol
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.62-68
    • /
    • 2017
  • It is important to study on the combustion instability to develop liquid rocket engines for preventing lower combustion efficiency and destruction of combustion chamber. There are many researches on simplex injector with liquid pulsation to solve this problem. In real rocket engine system, however, they use coaxial injectors. Therefore, research on coaxial injector with liquid pulsation is essential. In this study, we investigate dynamic characteristics of gas centered swirl coaxial injector varying tangential inlet diameter. A mechanical pulsator was used to generate an excitation in the liquid flow, and the response characteristics of the injector were confirmed. As tangential inlet diameter increased, mass flow rates increased and spray angle decreased. As tangential inlet diamter decreased, gain decreased because the pressure fluctuation in the injector manifold rarely passed through the inlet. Additionally, it was confirmed that a sufficiently small tangential inlet served as a damper.

Changes in The Pressure-Flow Control Characteristics of Shunt Valves by Intracranial Pressure Pulsation (뇌압 펄스에 의한 션트밸브의 압력-유량제어 특성의 변화)

  • 홍이송;이종선;장종윤
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.5
    • /
    • pp.391-395
    • /
    • 2002
  • Shunt valves used to treat patient with hydrocephalus were numerically simulated to investigate influence of pressure pulsation on their flow control characteristics. We modeled flow orifice through the shunt valve and imposed pulsating pressure and valve diaphragm movement to compute flow through the valve. The results of our study indicated that flow rates increased more than 40% by introducing pressure pulsation and diaphragm movement on the shunt valve. Our results demonstrate the pressure-flow control characteristics of shunt valves implanted above human brain may be quite different from those obtained by syringe pump test just after manufacture that induces uniform pressure.

Minimization of Active Power and Torque Ripple for a Doubly Fed Induction Generator in Medium Voltage Wind Power Systems under Unbalanced Grid Conditions

  • Park, Yonggyun;Han, Daesu;Suh, Yongsug;Choi, Wooyoung
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.1032-1041
    • /
    • 2013
  • This paper investigates control algorithms for a doubly fed induction generator with a back-to-back three-level neutral-point clamped voltage source converter in medium voltage wind power systems under unbalanced grid conditions. Three different control algorithms to compensate for unbalanced conditions have been investigated with respect to four performance factors; fault ride-through capability, instantaneous active power pulsation, harmonic distortions and torque pulsation. The control algorithm having a zero amplitude of torque ripple shows the most cost-effective performance concerning torque pulsation. The least active power pulsation is produced by the control algorithm that nullifies the oscillating component of the instantaneous stator active and reactive powers. A combination of these two control algorithms depending on the operating requirements and the depth of the grid unbalance presents the most optimized performance factors under generalized unbalanced operating conditions leading to high performance DFIG wind turbine systems.