• Title/Summary/Keyword: Pulpal floor

Search Result 14, Processing Time 0.016 seconds

A cone-beam computed tomography study of the prevalence and location of the second mesiobuccal root canal in maxillary molars

  • Seong-Ju Lee ;Eun-Hye Lee ;Se-Hee Park ;Kyung-Mo Cho ;Jin-Woo Kim
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.4
    • /
    • pp.46.1-46.8
    • /
    • 2020
  • Objectives: This study aimed to investigate the incidence and location of the second mesiobuccal root (MB2) canal in maxillary molars with the aid of various measuring points and lines using cone-beam computed tomography (CT). Materials and Methods: A total of 205 images of patients who underwent cone-beam CT examinations between 2011 and 2015 as part of their dental diagnosis and treatment were included. There were 76 images of the maxillary first molar and 135 images of the maxillary second molar. Canal orifices were detected at -1 mm from the top of the pulpal floor on cone-beam CT images. Image assessment was performed by 2 observers in reformatted image planes using software. Assessments included measurement of the distance between the MB1 and MB2 canals, and the angles between the lines connecting the MB1-MB2 and distobuccal (DB)-palatal (P) canals. The data were analyzed using the student's t-test. Results: The prevalence of the MB2 canal was 86.8% in the first molar and 28.9% in the second molar. The angle between the lines connecting the MB1-MB2 and DB-P canals was 2.3° ± 5.7° in the first molar and -3.95° ± 7.73° in the second molar. The distance between the MB1 and MB2 canals was 2.1 ± 0.44 mm in the first molar and 1.98 ± 0.42 mm in the second molar. Conclusions: The angles between the lines connecting the MB1-MB2 and DB-P canals was almost parallel. These findings may aid in the prediction of the location of the MB2 canal orifice.

MORPHOLOGIC ANALYSIS OF C-SHAPED ROOT USING 3-D RECONSTRUCTION (3차원 재구성법에 의한 C-shaped root의 형태분석)

  • Jung, Eun-Hee;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.4
    • /
    • pp.421-431
    • /
    • 2002
  • C-shaped canal configuration is very difficult to treat because that clues about preoperative canal anatomy cannot be ascertained from clinical crown morphology and limited information can be derived from radiographic examination. This study was done to get more informations about the root and canal configuration of C-shape root by 3-dimensionally reconstructing for the purpose of enhancing success rate of endodontic treatment. 30 mandibular molars with C-shaped root were selected. Six photo images from occlusal, apical, mesial, distal, buccal, lingual directions and radiographic view were taken as preoperative ones to compare them with 3-D image. After crown reduction to the level of 1-2mm over pulpal floor was performed, teeth were stored in 5.25% sodium hypochlorite solution for the removal of pulp tissue and debris. They were cleaned under running water, allowed to bench dry and embedded in a self-curing resin. This resin block was serially ground with a microtome (Accutom-50, Struers, Denmark) and the image of each level was recorded by digital camera (FinePix S1-pro, Fuji Co., Japan). The thickness of each section was 0.25mm. Photographs of serial sections through all root canal were digitized using Adobe Photoshop 5.0 and then minimum thickness of open and closed sites were measured (open site is the surface containing occluso-apical groove closed site is oppsite). After dizitization using 3-D Doctor (Able software Corp, USA). 3D reconstruction of the outer surface of tooth and the inner surface of pulp space was made. Canal classsification of C-shaped roots was performed from this 3-D reconstructed image. The results were as follows : 1. Most C-shape rooted teeth showed lingual groove (28/30). 2 According to Vertuccis' calssification, type I, II, III, IV, VII were observed. but also new canal types suck as 2-3-2, 1-2-3-2. 2-3-2-1, 2-3-2-3 were shown. 3 There was little difference in minimum thickness on coronal and apical portions, but open site were thinner than closed site on mid portion. Conclusively, 3D reconstruction method could make the exact configurations of C-shape root possible to be visualized and analyzed from multi-directions. Data from minimum thickness recommend cleaning and shaping be more carefully done on dangerous mid portion.

AN EXPERIMENTAL STUDY ON THE FRACTURE STRENGTH OF CLASS II POSTERIOR RESTORATIONS (II급 와동에서 각종 구치용 수복물의 파절강도에 관한 실험적 연구)

  • Lee, Kye-Hyuck;Hur, Seung-Myun;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.2
    • /
    • pp.357-367
    • /
    • 1993
  • The purpose of this study was to evaluate the fracture strength of class II restored premolars with amalgam, posterior composite, amalgam - Ketac silver, resin - Ketac silver restorations at marginal ridge. Fifty extacted maxillary and mandibular premolar teeth that were caries free, fracture free, and restoration free were selected and randomly divided into five groups : Group 1 : 10 intact teeth, Group 2 : 10 teeth with class II cavities and restored with, amalgam, Group 3: 10 teeth with class II cavities and restored with posterior resin, Group 4 : 10 teeth with class II cavities and restored with amalgam - ketac silver, Group 5 : 10 teeth with class II cavities and restored with resin - Ketac silver. All teeth were mounted in base of dental stone within metal rings of 2cm diameter, exposing only the crown portion. Class II mesio - occlusal or disto - occlusal cavities were prepared into specimens of Group 2 through 5 by using a No. 710 fissure bur. The occlusal portion was prepared to a faciolingual width of 1.5mm and a pulpal depth of 1.5mm. The proximal protion was prepared to a faciolingual width of 4mm, a occlusogingival height of 4mm, and a gingival floor of 1.5mm. The teeth in Group 2 and 3 were resotored with silver amalgam apd posterior resin respectively. In Group 4 and 5, proximal portions were first filled with Ketac silver 1.5mm gingivally and remaining cavities were restored with amalgam and posterior resin respectively. All specimens were stored in 100 % relative humidity at $37^{\circ}C$ for 48 hours before testing. All teeth were subjected to a compressive load in a Universal Instron Testing Machine at marginal ridges. The loads required to fracture the restorations were recorded in killograms and the data obtained were subjected to statisticall analysis. The results were all follows : 1. The fracture strength of Group 1 which were unprepared were $100{\pm}10.1\;kg$ and the higher values than Group 2, 3, 4, 5 which were prepared and resotred. 2. In restored groups, Group 2 had the higher fracture strength($81.8{\pm}12.4\;kg$) than other groups and Group 4 had the lowest fracture strength($66.8{\pm}9.2kg$). 3. There were significant differences between fracture strength of between Group 1 and Group 3, 4, 5(P<0.05), but not significant difference between fracture strength of Group 2, 3, 4, 5(P>0.05).

  • PDF

A STUDY ON THE EFFECT OF DENTIN ADHESIVE TO FLUORIDE RELEASE OF COMPOMER (상아질 결합제가 컴포머의 불소유리에 미치는 영향에 관한 연구)

  • Yoon, Yeo-Sang;Kim, Jong-Soo;Kwon, Soon-Won;Kim, Yong-Kee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.2
    • /
    • pp.228-237
    • /
    • 2001
  • It is well known that glass-ionomer cement and compomer can release fluoride which can inhibit the progression of dental caries. The purposes of this study were to evaluate whether the fluoride from fluoride-containing filling materials can penetrate the dentin bonding adhesive and the dentin bonding adhesive can increase the bond strength of resin-modified glass ionomer. The amount of fluoride release from resin-modified glass ionomer and compomer was measured during 28 days of period and statistically analyzed by t-test. The bond strength of each material with/without dentin bonding adhesive was measured and also statistically analyzed by t-test. The distribution of fluoride from each material into the tooth was explored by electron probe microanalysis system(EPMA). The experimental teeth used were second primary molars about to exfoliate. The amount of fluoride release from each material was diminished by dentin bonding adhesive during 28 days(p<0.05) and the bond strength was not increased by dentin adhesive in resin-modified glass ionomer. The bond strength of group VI was not detectable. The distribution of fluoride from each material into teeth was according to dentino-enamel junction and dispersed into pulp from pulpal floor. The widest distribution was shown in resin-modified glass ionomer cement filled without the application of dentin bonding adhesive.

  • PDF