• Title/Summary/Keyword: Pulp regeneration

Search Result 48, Processing Time 0.028 seconds

Effects of Micro-Electrical Stimulation on Regulation of Behavior of Electro-Active Stem Cells

  • Im, Ae-Lee;Kim, Jangho;Lim, KiTaek;Seonwoo, Hoon;Cho, Woojae;Choung, Pill-Hoon;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.113-120
    • /
    • 2013
  • Purpose: Stem cells provide new opportunities in the regenerative medicine for human or animal tissue regeneration. In this study, we report an efficient method for the modulating behaviors of electro-active stem cells by micro-electric current stimulation (mES) without using chemical agents, such as serum or induction chemicals. Methods: Dental pulp stem cells (DPSCs) were cultured on the tissue culture dish in the mES system. To find a suitable mES condition to promote the DPSC functions, the response surface analysis was used. Results: We found that a working micro-current of 38 ${\mu}A$ showed higher DPSC proliferation compared with other working conditions. The mES altered the expressions of intracellular and extracellular proteins compared to those in unstimulated cells. The mES with 38 ${\mu}A$ significantly increased osteogenesis of DPSCs compared with ones without mES. Conclusions: Our findings indicate that mES may induce DPSC proliferation and differentiation, resulting in applying to DPSCs-based human or animal tissue regeneration.

Biocompatibility of two experimental scaffolds for regenerative endodontics

  • Leong, Dephne Jack Xin;Setzer, Frank C.;Trope, Martin;Karabucak, Bekir
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.2
    • /
    • pp.98-105
    • /
    • 2016
  • Objectives: The biocompatibility of two experimental scaffolds for potential use in revascularization or pulp regeneration was evaluated. Materials and Methods: One resilient lyophilized collagen scaffold (COLL), releasing metronidazole and clindamycin, was compared to an experimental injectable poly(lactic-co-glycolic) acid scaffold (PLGA), releasing clindamycin. Human dental pulp stem cells (hDPSCs) were seeded at densities of $1.0{\times}10^4$, $2.5{\times}10^4$, and $5.0{\times}10^4$. The cells were investigated by light microscopy (cell morphology), MTT assay (cell proliferation) and a cytokine (IL-8) ELISA test (biocompatibility). Results: Under microscope, the morphology of cells coincubated for 7 days with the scaffolds appeared healthy with COLL. Cells in contact with PLGA showed signs of degeneration and apoptosis. MTT assay showed that at $5.0{\times}10^4$ hDPSCs, COLL demonstrated significantly higher cell proliferation rates than cells in media only (control, p < 0.01) or cells co-incubated with PLGA (p < 0.01). In ELISA test, no significant differences were observed between cells with media only and COLL at 1, 3, and 6 days. Cells incubated with PLGA expressed significantly higher IL-8 than the control at all time points (p < 0.01) and compared to COLL after 1 and 3 days (p < 0.01). Conclusions: The COLL showed superior biocompatibility and thus may be suitable for endodontic regeneration purposes.

Pulp vitality and coronal discoloration following traumatic injuries (치아외상 후 치아 변색과 치수 생활력의 변화)

  • Yoon, Tae-Sun;Kong, Hyung-Gyu;Kim, Eui-Seong
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.6
    • /
    • pp.492-496
    • /
    • 2010
  • Coronal discoloration is a common sequela to traumatic injuries. In subluxation cases, although the injury is not strong enough to rupture the apical vessels, discoloration may appear by tearing thin walls or occluding small capillaries. In absence of infection pulpal regeneration can occur, and as a result discoloration may completely or partially subside. But judging pulpal status by coronal discoloration can be dangerous and it may lead to unnecessary treatment. This case presents coronal discoloration and recovery following traumatic injury of maxillary anterior teeth. In diagnosing traumatized teeth routine cold tests or electric pulp tests are known to be unreliable, but with the aid of ultrasound doppler imaging, assessing pulp vitality of traumatized teeth can be more accurate.

Development of Scaffold for Cell Attachment and Evaluation of Tissue Regeneration Using Stem Cells Seeded Scaffold (세포부착을 위한 스캐폴드 개발 및 줄기세포를 적용한 스캐폴드의 조직재생능력 평가)

  • You, Hoon;Song, Kyung-Ho;Lim, Hyun-Chang;Lee, Jung-Seok;Yun, Jeong-Ho;Seo, Young-Kwon;Jung, Ui-Won;Lee, Yong-Keun;Oh, Nam-Sik;Choi, Seong-Ho
    • Implantology
    • /
    • v.18 no.2
    • /
    • pp.120-138
    • /
    • 2014
  • Purpose: The purpose of this study was to review the outcomes of a series of studies on tissue regeneration conducted in multiple institutions including the Department of Periodontology, College of Dentistry, Yonsei University. Materials and Methods: Studies were performed divided into the following three subjects; 1) Development of three-dimensional nano-hydroxyapatite (n-HA) scaffold for facilitating drug release and cell adhesion. 2) Synergistic effects of bone marrow-derived mesenchymal stem cells (BMMSC) application simultaneously with platelet-rich plasma (PRP) on HA scaffolds. 3) The efficacy of silk scaffolds coated with n-HA. Also, all results were analyzed by subjects. Results: Hollow hydroxyapatite spherical granules were found to be a useful tool for the drug release and avidin-biotin binding system for cell attachment. Also, BMMSC simultaneously with PRP applied in an animal bone defect model was seen to be more synergistic than in the control group. But, the efficacy of periodontal ligament cells and dental pulp cells with silk scaffolds could not be confirmed in the initial phase of bone healing. Conclusion: The ideal combination of three elements of tissue engineering-scaffolds, cells and signaling molecules could be substantiated due to further investigations with the potentials and limitations of the suggested list of studies.

BONE REGENERATION OF THE EXPERIMENTAL ENDODONTIC-PERIODONTIC COMBINED DEFECTS IN THE MANDIBLES OF THE DOGS (성견 하악의 치주-치근단 실험적 복합병소에서 골조직 재생에 관한 연구)

  • Kim, Jeong-Hye;Baek, Seung-Ho;Yoon, Soo-Han
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.286-298
    • /
    • 1999
  • The endodontic-periodontic combined lesions have been difficult to get correct diagnosis and predictable treatment. This study was to make the experimental endodontic-periodontic combined defects in dogs for the study of the periodontal regeneration and to evaluate the efficacy of the enamel matrix protein and e-PTFE membrane in the experimental endodontic-periodontic combined defects. 5 mongrel dogs were used. The pulp chambers were opened and the plaque was inserted into the chambers to induce the periapical lesions on the mandibular second, third and fourth premolars of the dogs. 1 month later, the root canal treatments were done with gutta perch a and ZOE sealer. On the day of surgery, the periapical defects were standardized by trephine bur. The buccal dehiscence defects were made by the dental bur and bone chisels. The apicoectomy with retrofilling was done. The prepared roots were randomly selected for test and control groups. In the experimental groups, the enamel matrix derivative and e-PTFE membrane were used. Nothing was placed on the control group. Fluroscent labelling was used to evaluate the bone formation. After 4 and 12 weeks, the dogs were sacrificed and undecalcified sections were prepared and stained with toluidine blue. Those histologic sections were examined by fluorescent microscopy and light microscopy. The results were as follows. 1. In the control group, new bone was formed in the periapical defects and scarcely in the buccal dehiscence defects. New cementum was not detected at 4 and 12 weeks. 2. In the experimental groups, new bone, new cementum and periodontal ligament were found in the periapical and buccal dehiscence defects. The relative amount and the quality of the new bone, new cementum and periodontal ligament tissue that had formed on the experimental groups were superior to those of the control group. 3. The current observation implicated that e-PTFE membrane and enamel matrix protein could be the effective tools for the guided tissue regeneration of the endo-perio combined defects.

  • PDF

A HISTOPATHOLOGICAL STUDY OF PULP TISSUE REACTION TO INTERMEDIATE RESTORATIVE MATERNAL IN YOUNG ADULT DOG'S TEETH (치수보호용 제재가 성견 치수조직에 미치는 영향에 관한 병리조직학적 연구)

  • Choi, Don-Ok
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.10 no.1
    • /
    • pp.35-45
    • /
    • 1983
  • This study was undertaken to evaluate the pulpal responses to the intermediate restorative materials such as Zinc phosphate cement, Polycarboxylate cement, IRM (zinc oxide eugenol cement), Dycal, Life, Cresatin, and Fluoride in caivties which were cut with high speed instrument. 5 dogs were used as experimental animals and devided into 8 groups. The intervals of observaobservation ranged 3 days, 1, 3, 4, 8 weeks after experiment respectively. The specimens were fixed with 10% formalin and decalcified in 5% nitric acid. All slides were stained with hemtoxylin-eosin and examined histopathologically. The results were as follows: 1. In control group, severe vacuolar degeneration and atrophy of odontoblasts were seen in 3 days, hemorrhage and congestion continued until 8 weeks. Necrosis of odontoblastic layer was seen in zinc phosphate cement group and polycarboxylate cement group. 2. In dycal group, vacuolar degeneration and atrophy of odontoblast were not seen. but in Life group, these were seen in 3 days and partially continued until 3 weeks. In 4 weeks, regeneration of odontoblast was occured. 3. In Crcsatin group, there was no pathosis except odontoblastic displacement. In Fluoride group, vacuolar degeneration of odontoblast was seen and soon disappeared. As compared with control group, pathological change of the pulp tissue in experimental group were decreased after amalgam restoration.

  • PDF

PULP RESPONSE OF BEAGLE DOG TO DIRECT PULP CAPPING MATERIALS: HISTOLOGICAL STUDY (직접치수복조재에 따른 비글견 치수의 조직반응에 대한 연구)

  • Bae, Ji-Hyun;Kim, Young-Gyun;Yoon, Pil-Young;Cho, Byeong-Hoon;Choi, Yong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.1
    • /
    • pp.5-12
    • /
    • 2010
  • The purpose of this study was to evaluate the pulp tissue reaction to direct pulp capping of mechanically exposed beagle dogs' pulp with several capping materials. A total of 36 teeth of 2 healthy beagle dongs were used. The mechanically exposed pulps were capped with one of the followings: (1) Mineral Trioxide Aggregate (MTA: $ProRoot^{(R)}$ MTA. Dentsply, Tulsa, USA), (2) Clearfil SE Bond (Dentin adhesive system: Kuraray, Osaka, Japan), (3) Ultra-Blend (Photo-polymerized Calcium hydroxide: Ultradent, South Jordan, USA), (4) Dycal (Quick setting Calcium hydroxide: LD Caulk Co., Milford, USA) at 7, 30, and 90 days before sacrificing. The cavities were restored with Z350 flowable composite resin (3M ESPE, St. Paul. MN, USA). After the beagle dogs were sacrificed, the extracted teeth were fixed, decalcified, prepared for histological examination and stained with HE stain. The pulpal tissue responses to direct pulp capping materials were assessed. In MTA calcium hydroxide, and photo-polymerized calcium hydroxide groups, initial mild inflammatory cell infiltration, newly formed odontoblast-like cell layer and hard tissue bridge formation were observed. Compared with dentin adhesive system, these materials were biocompatible and good for pulp tissue regeneration. In dentin adhesive system group, severe inflammatory cell infiltration, pulp tissue degeneration and pulp tissue necrosis were observed. It seemed evident that application of dentin adhesive system in direct pulp capping of beagle dog teeth cannot lead to acceptable repair of the pulp tissue with dentine bridge formation.

THE EFFECT OF CO2 LASER ON DENTAL PULP OF DOG (CO2 laser조사가 성견치수에 미치는 영향에 관한 실험적 연구)

  • Kim, Hee-Joong;Lee, Chan-Young;Lee, Sung-Jong;Lee, Chung-Suck
    • Restorative Dentistry and Endodontics
    • /
    • v.13 no.1
    • /
    • pp.7-19
    • /
    • 1988
  • The object of this paper was to investigate the histopatological changes on dog's pulp under cavitation by irradiation of the $CO_2$ laser. The subjects were derived from four dogs, and irradiated 113.23 J/$mm^2$, 283.09 J/$mm^2$, 566.08 J/$mm^2$ in Group I, II, and III respectively. The dogs were sacrificed immediately, 24 hour, 72 hour and 1 week after $CO_2$ laser treatment. For light microscopic examination, routine H-E and PAS stains were employed. For electron microscopic observation, the teeth were fixed in 1% paraformaldehyde and 1% glutaraldehyde, decalcified teeth in 10% EDTA were stained by uranyl acetate and lead citrate. The observation was made with a Hitachi H-500 model electron microscope. The following results were obtained in this study: 1. At the early stage of the experimental sub-groups-immediately, 24 hour, 72 hour samples of Group I, II and III-coagulation necrosis and hyperemia were observed in odontoblastic and subodontoblastic pulpal layer. 2. At the 1 week sub-group of Group I, II, regenerative hyperplasia of the odontoblasts without coagulation necrosis were revealed, in addition to thickened predentin. On he other hand coagulation necrosis and atrophic change accompanying with hyperplasia were found at the 1 week sub-group of Group III. 3. Ultrastructurally, the odontoblasts appeared nuclear degeneration, vacuolar change of cytoplasmic organelles and rupture of plasma membrane at the early stage of the experimental period of all groups. 4. Under spectrohelioscopic examination, regenerative odontobalsts were seen at the 1 week specimens of Group I, II and III. 5. The pulpal response occured at 113-566 J/$mm^2$. The pathologic change of pulp tissue occured at the early experimental period but regeneration of odontoblasts could be seen after 1 week.

  • PDF

CONTINUED APEXOGENESIS ON TRAUMA INDUCED NONVITAL IMMATURE PERMANENT TOOTH (외상으로 실활된 미성숙 영구치에서의 계속된 치근 형성)

  • Kang, Yu-Jin;Kim, Hye-Young;Kim, Young-Jin;Kim, Hyun-Jung;Nam, Soon-Hyeun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.4
    • /
    • pp.640-646
    • /
    • 2009
  • In case of luxation injuries, loss of tooth vitality is common. And in case of trauma in the immature permanent teeth, precise diagnosis of pulp necrosis is very difficult. That is because limitation in distinguishing between normal dental papilla in immature permanent teeth, transient apical breakdown(TAB), which is part of normal healing process, and apical radiolucency in pulp necrosis. Especially in non-vital immature permanent tooth, the treatment is complex and requires long time. This clinical case report shows that severely infected immature teeth with periradicular periodontitis can undergo healing and apexogenesis or maturogenesis with no definative treatment or after conservative treatment. In the cases reported, we emphasize the considerable power of regeneration of the tooth, probably due to its large number of undifferentiated mesenchymal cells in the dental papilla, pulp tissue, periodontal ligament tissues. Thus, when endodontic treatment in immature permanent teeth, over instrumentation is not recommend for preserve the apical vital stem cells.

  • PDF

Pulp Revascularization of Infected Immature Permanent Teeth Using Platelet-Rich Fibrin and Double Antibiotic Paste : Case Report (감염된 미성숙 영구치에서 platelet-rich fibrin과 double antibiotic paste를 이용한 치수 재혈관화 : 증례 보고)

  • Jeon, Sang-Yun;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.40 no.3
    • /
    • pp.216-222
    • /
    • 2013
  • Paradigm shift in management of infected immature permanent teeth has occurred. The new concept of the treatment includes minimal or no intracanal instrumentation, disinfection with triple antibiotic paste and sealing with mineral trioxide aggregate. This regenerative endodontic treatment promotes differentiation of periradicular stem cells that induce regeneration of vital tissue and continuation of root formation. Thorough disinfection and three-dimensional scaffold are important in this new concept of the treatment. Platelet-rich fibrin has been reported as 'new scaffold' instead of blood clot, which had been used in the past. Triple antibiotics can be used to disinfect the tooth but may lead to complications including discoloration. Three cases of infected immature permanent tooth caused by dens evaginatus fracture are presented. After removal of necrotic pulp and thorough intracanal irrigation, only platelet-rich fibrin was applied to the root canal in the first case. In the other cases, topical antibiotics was used for disinfection and platelet-rich fibrin for scaffold. In all the cases, the opening was sealed with mineral trioxide aggregate. All the cases showed proper healing of inrabony lesion and some lengthening of root. According to these cases, regenerating vital tissue of the infected immature permanent tooth can be achieved with disinfection and application of platelet-rich fibrin.