• Title/Summary/Keyword: Pulmonary Region Extraction

Search Result 5, Processing Time 0.02 seconds

Surgical Extraction of an Embolized Atrial Septal Defect Occluder Device into Pulmonary Artery after Percutaneous Closure

  • Yolcu, Mustafa;Kaygin, Mehmet Ali;Ipek, Emrah;Ulusoy, Fatih Rifat;Erkut, Bilgehan
    • Journal of Chest Surgery
    • /
    • v.46 no.2
    • /
    • pp.135-137
    • /
    • 2013
  • An atrial septal defect is the most common type of congenital heart disease among adults. Surgical repair or percutaneous closure of the defect is the treatment options. Even though percutaneous closure seems to be less risky than surgical repair, it may result in fatal complications like device embolism, cardiac perforation and tamponade. Herein we report a case of the embolism of a device into the pulmonary artery after one hour of percutaneous closure in which the embolized device was surgically removed and the defect was closed with a pericardial patch.

Pulmonary Vessels Segmentation and Refinement On the Chest CT Images (흉부 CT 영상에서 폐 혈관 분할 및 정제)

  • Kim, Jung-Chul;Cho, Joon-Ho;Hwang, Hyung-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.188-194
    • /
    • 2013
  • In this paper, we proposed a new method for pulmonary vessels image segmentation and refinement from pulmonary image. Proposed method consist of following five steps. First, threshold estimation is performed by polynomial regression analysis of histogram variation rate of the pulmonary image. Second, segmentation of pulmonary vessels object is performed by density-based segmentation method based on estimated threshold in first step. Third, 2D connected component labeling method is applied to segmented pulmonary vessels. The seed point of both side diaphragms is determined by eccentricity and size of component. Fourth step is diaphragm extraction by 3D region growing method at the determined seed point. Finally, noise cancelation of pulmonary vessels image is performed by 3D connected component labeling method. The experimental result is showed accurately pulmonary vessels image segmentation, the diaphragm extraction and the noise cancelation of the pulmonary vessels image.

Pulmonary Vessel Extraction and Nodule Reclassification Method Using Chest CT Images (흉부 CT 영상을 이용한 폐 혈관 추출 및 폐 결절 재분류 기법)

  • Kim, Hyun-Soo;Peng, Shao-Hu;Muzzammil, Khairul;Kim, Deok-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.6
    • /
    • pp.35-43
    • /
    • 2009
  • In the Computer Aided Diagnosis(CAD) System, the efficient way of classifying nodules from chest CT images of a patient is to perform the classification of the remaining part after the pulmonary vessel extraction. During the pulmonary vessel extraction, due to the small difference between the vessel and nodule features in imaging studies such as CT scans after having an injection of contrast, nodule maybe extracted along with the pulmonary vessel. Therefore, the pulmonary vessel extraction method plays an important role in the nodule classification process. In this paper, we propose a nodule reclassification method based on vessel thickness analysis. The proposed method consist of four steps, lung region searching step, vessel extraction and thinning step, vessel topology formation and correction step and the reclassification of nodule in the vessel candidate step. The radiologists helped us to compare the accuracy of the CAD system using the proposed method and the accuracy of general one. Experimental results show that the proposed method can extract pulmonary vessels and reclassify false-positive nodules accurately.

Pulmonary vascular Segmentation and Refinement On the CT Scans (컴퓨터 단층 촬영 영상에서의 폐혈관 분할 및 정제)

  • Shin, Min-Jun;Kim, Do-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.591-597
    • /
    • 2012
  • Medical device performance has been advanced while images are expected to be acquired with further higher quality and pertinent applicability as images have been increasing in importance in analyzing major organs. Recent high frequency of image processing by MATLAB in image analysis area accounts for the intent of this study to segment pulmonary vessels by means of MATLAB. This study is to consist of 3 phases including pulmonary region segmentation, pulmonary vessel segmentation and three dimensional connectivity assessment, in which vessel was segmented, using threshold level, from the pulmonary region segmented, vessel thickness was measured as two dimensional refining process and three dimensional connectivity was assessed as three dimensional refining process. It is expected that MATLAB-based image processing should contribute to diversity and reliability of medical image processing and that the study results may lay a foundation for chest CT images-related researches.

An Effective Extraction Algorithm of Pulmonary Regions Using Intensity-level Maps in Chest X-ray Images (흉부 X-ray 영상에서의 명암 레벨지도를 이용한 효과적인 폐 영역 추출 알고리즘)

  • Jang, Geun-Ho;Park, Ho-Hyun;Lee, Seok-Lyong;Kim, Deok-Hwan;Lim, Myung-Kwan
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.1062-1075
    • /
    • 2010
  • In the medical image application the difference of intensity is widely used for the image segmentation and feature extraction, and a well known method is the threshold technique that determines a threshold value and generates a binary image based on the threshold. A frequently-used threshold technique is the Otsu algorithm that provides efficient processing and effective selection criterion for choosing the threshold value. However, we cannot get good segmentation results by applying the Otsu algorithm to chest X-ray images. It is because there are various organic structures around lung regions such as ribs and blood vessels, causing unclear distribution of intensity levels. To overcome the ambiguity, we propose in this paper an effective algorithm to extract pulmonary regions that utilizes the Otsu algorithm after removing the background of an X-ray image, constructs intensity-level maps, and uses them for segmenting the X-ray image. To verify the effectiveness of our method, we compared it with the existing 1-dimensional and 2-dimensional Otsu algorithms, and also the results by expert's naked eyes. The experimental result showed that our method achieved the more accurate extraction of pulmonary regions compared to the Otsu methods and showed the similar result as the naked eye's one.