• Title/Summary/Keyword: Pull-out Behavior

Search Result 190, Processing Time 0.028 seconds

Bond between Carbon Fibers Sheet and Concrete (탄소섬유쉬트와 콘크리트의 부착)

  • 최근도;류화성;최기선;이한승;유영찬;김긍환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1019-1024
    • /
    • 2000
  • Carbon fiber sheet has been widely used for the strengthening of the concrete buildings structures due to its excellent physical properties such as high strength, lightness and high durability. Bond strength or behavior, on the other, hands, between carbon fiber sheet and concrete is very important in strengthening the concrete member using CFS. Also the bond failure mechanism between CFS and concrete should be fully verified and understood. This study is to investigate the bond strength of CFS to th concrete by the direct pull-out test and the tensile-shear test methods. From the tests, the average bond stress, $$\tau$_{y}$ and the effective bond length, $$\ell$_{u}$ are acquired.

AE Signals Characteristics from Fracture by Type of CFRP Stacking Structure (CFRP 적층 형태에 따른 파괴시 음향방출 신호특성)

  • 남기우;문창권
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.67-71
    • /
    • 2002
  • Damage process of CFRP laminates was characterized by Acoustic Emission (AE). The main objective of this study is to determine if the sources of AE in CERP laminates could be identified from the characteristics of the waveform signals recorded during monotonic tensile test. The time history and power spectrum of each individual wave signal recorded during test were examined and classified according to their special characteristics. The wave from and frequency of AE signal from a specimens is an aid to the determination of the extent of the different fracture mechanism such as matrix crack, debonding, fiber pull-out and fiber fracture as load is increased. Four distinct types of signals were observed regardless of specimen condition. The result showed that the AE method could be effectively used for analysis of fracture mechanism in CFRP laminates.

Bond Properties of Polymer Cement Mortar to Reinforced Steel Bar (폴리머 시멘트 몰탈의 철근 부착특성 평가)

  • Park, Dong-Cheon;Cho, Gyu-hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.106-107
    • /
    • 2013
  • The purpose of this study is to characterize the bonding properties between reinforced bar and re-emulsion polymer cement mortar through the pull off test. The properties of polymer cement mortar before and after hardening were measured. Spiral reinforced steel bar was used to control the brittleness fracture of test specimens. In addition polymer content as experimental factors, the types of reinforced bar and corrosion were considered as well. Non linear FEM analysis was carried out to expect the behavior of bonding interface under the certain load.

  • PDF

Experimental study on improving bamboo concrete bond strength

  • Mali, Pankaj R.;Datta, Debarati
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.191-201
    • /
    • 2019
  • Bamboo concrete bond behaviour is investigated through pullout test in this work. The bamboo strip to be used as reinforcement inside concrete is first treated with chemical adhesive to make the bamboo surface impermeable. Various surface coatings are explored to understand their water repellant properties. The chemical action at the bamboo concrete interface is studied through different chemical coatings, sand blasting, and steel wire wrapping treatment. Whereas mechanical action at the bamboo concrete interface is studied by developing mechanical interlock. The result of pullout tests revealed a unique combination of surface treatment and grooved bamboo profile. This combination of surface treatment and a grooved bamboo profile together enhances the strength of bond. Performance of a newly developed grooved bamboo strip is verified against equivalent plain rectangular bamboo strip. The test results show that the proposed grooved bamboo reinforcement, when treated, shows highest bond strength compared to treated plain, untreated plain and untreated grooved bamboo reinforcement. Also, it is observed that bond strength is majorly influenced by the type of surface treatment, size and spacing of groove. The changes in bamboo-concrete bond behavior are observed during the experimentation.

Tensile Properties of Carbon-Glass/Epoxy Hybrid Laminates Produced by VARTM (VARTM 법으로 제작한 탄소-유리/에폭시 하이브리드 적층재의 인장 특성)

  • Kim, Yonjig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.10
    • /
    • pp.760-765
    • /
    • 2011
  • This paper presents a study of the tensile behavior of carbon and glass fiber reinforced epoxy hybrid laminates manufactured by vacuum assisted resin transfer molding (VARTM). The objective of this study was to develop and characterize carbon fiber reinforced plastic hybrid composite material that is low cost and light-weight and that possesses adequate strength and stiffness. The effect of position and content of the glass fabric layer on the tensile properties of the hybrid laminates was examined. The strength and stiffness of the hybrid laminates showed a steady decrease with an increase of the glass fabric content this decrease was almost linear. Fracture strain of these laminates showed a slight increasing trend when glass fabric content was increased up to 3 layers, but at a glass fabric content > 3 layers the strain was almost constant. When glass fabric layers were at both outer surfaces, the hybrid laminate exhibited a slightly higher tensile strength and elastic modulus due to the small amount of glass yarn pull-out.

Strengthening Mechanism of the Ni3Al-based Alloy (Ni3Al계 합금의 강화기구)

  • Han, Chang-Suk
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.137-144
    • /
    • 2011
  • Strengthening mechanisms in an ordered intermetallic compound containing coherent precipitates of lower antiphase boundary energy than the matrix were investigated on the basis of the interaction between the deformation induced dislocations and the disordered precipitates in an $Ll_2$ ordered $Ni_3Al$-based alloy. Extra work was needed to pull out the dislocations from the precipitate, which was dependent on the difference in the antiphase boundary energy between the matrix and the precipitate, as well as the size and volume fraction of the precipitate. The strength of the $Ll_2$ ordered ${\gamma}^{\prime}$ phase containing fine precipitates of the disordered ${\gamma}$ phase was examined using the proposed model. The model can explain almost quantitatively the age hardening behavior of the $Ll_2$ ordered ${\gamma}^{\prime}$ phase.

Experimental Study on Pullout Behavior of Composite Type Ground Anchor (복합형 앵커의 인발거동에 관한 실험적 연구)

  • Hong, Seok-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.143-155
    • /
    • 2008
  • Ground anchors are classified depending on the kind of stress the grout is subjected to. If the grout material is subjected to tension then it is classified as tension anchor while when the grout material is subjected to compression it is classified as compression anchor. In this study a composite type anchor that possesses both the tension and compression mechanism was developed. For field tests, strain gauges were installed inside the anchor body in soft: soil. From the strain monitoring results, pull-out resistance mechanism that possesses both tension and compression strain was seen.

Bond Characteristics at the Interface between HMA Surface and RCC Base (아스팔트 표층과 RCC 기층 계면에서의 부착특성 연구)

  • Hong, Ki;Kim, Young Kyu;Bae, Abraham;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.37-46
    • /
    • 2017
  • PURPOSES : A composite pavement utilizes both an asphalt surface and a concrete base. Typically, a concrete base layer provides structural capacity, while an asphalt surface layer provides smoothness and riding quality. This pavement type can be used in conjunction with rollercompacted concrete (RCC) pavement as a base layer due to its fast construction, economic efficiency, and structural performance. However, the service life and functionality of composite pavement may be reduced due to interfacial bond failure. Therefore, adequate interfacial bonding between the asphalt surface and the concrete base is essential to achieving monolithic behavior. The purpose of this study is to investigate the bond characteristics at the interface between asphalt (HMA; hot-mixed asphalt) and the RCC base. METHODS : This study was performed to determine the optimal type and application rate of tack coat material for RCC-base composite pavement. In addition, the core size effect, temperature condition, and bonding failure shape were analyzed to investigate the bonding characteristics at the interface between the RCC base and HMA surface. To evaluate the bond strength, a pull-off test was performed using different diameters of specimens such as 50 mm and 100 mm. Tack coat materials such as RSC-4 and BD-Coat were applied in amounts of 0.3, 0.5, 0.7, 0.9, and $1.1l/m^2$ to determine the optimal application rate. In order to evaluate the bond strength characteristics with temperature changes, a pull-off test was carried out at -15, 0, 20, and $40^{\circ}C$. In addition, the bond failure shapes were analyzed using an image analysis program after the pull-off tests were completed. RESULTS : The test results indicated that the optimal application rate of RSC-4 and BD-Coat were $0.8l/m^2$, $0.9l/m^2$, respectively. The core size effect was determined to be negligible because the bond strengths were similar in specimens with diameters of 50 mm and 100 mm. The bond strengths of RSC-4 and BD-Coat were found to decrease significantly when the temperature increased. As a result of the bonding failure shape in low-temperature conditions such as -15, 0, and $20^{\circ}C$, it was found that most of the debonding occurred at the interface between the tack coat and RCC surface. On the other hand, the interface between the HMA and tack coat was weaker than that between the tack coat and RCC at a high temperature of $40^{\circ}C$. CONCLUSIONS : This study suggested an optimal application rate of tack coat materials to apply to RCC-base composite pavement. The bond strengths at high temperatures were significantly lower than the required bond (tensile) strength of 0.4 MPa. It was known that the temperature was a critical factor affecting the bond strength at the interface of the RCC-base composite pavement.

An Experimental Study on the Shear Behavior of Composite Slabs Using Newly Developed Flat Deck-Plate(ACE-DECK) (신개발된 평데크플레이트(ACE-DECk)를 이용한 합성술래브의 전단거동에 관한 실험적 연구)

  • Heo, Byung-wook;Yang, Myung-Sook;Bae, Kyu-woong;Oh, Sang-Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.3
    • /
    • pp.255-263
    • /
    • 2001
  • Longitudinal shear failure is the most common failure-type in composite slabs. In this paper, the shear-connection behavior of composite slabs with a particular profiled steel sheeting, so called ACE-DECK, having a depth of 60mm is studied experimentaly. Twenty two pull-out test specimens of different shapes, concrete topping thickness, and different steel sheeting thickness are carried out. It is founded that the shear connection behavior of composite slabs are not affected significantly in the steel sheeting thickness and concrete topping thickness. A new type of profiled steel sheeting is more effective in shear-bond strength that of existing flat-type deck plate, which can offer longitudinal shear strength in composite slope up to $3.6kgf/cm^2$

  • PDF

High Performance Fiber Reinforced Cement Composites with Innovative Slip Hardending Twisted Steel Fibers

  • Kim, Dong-Joo;Naaman, Antoine E.;El-Tawil, Sherif
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.2
    • /
    • pp.119-126
    • /
    • 2009
  • This paper provides a brief summary of the performance of an innovative slip hardening twisted steel fiber in comparison with other fibers including straight steel smooth fiber, high strength steel hooked fiber, SPECTRA (high molecular weight polyethylene) fiber and PVA fiber. First the pull-out of a single fiber is compared under static loading conditions, and slip rate-sensitivity is evaluated. The unique large slip capacity of T-fiber during pullout is based on its untwisting fiber pullout mechanism, which leads to high equivalent bond strength and composites with high ductility. Due to this large slip capacity a smaller amount of T-fibers is needed to obtain strain hardening tensile behavior of fiber reinforced cementitious composites. Second, the performance of different composites using T-fibers and other fibers subjected to tensile and flexural loadings is described and compared. Third, strain rate effect on the behavior of composites reinforced with different types and amounts of fibers is presented to clarify the potential application of HPFRCC for seismic, impact and blast loadings.