• Title/Summary/Keyword: Public technology commercialization

Search Result 155, Processing Time 0.021 seconds

Improvement of the Efficacy Test Methods for Hand Sanitizers (Gel, Liquid, and Wipes): Emerging Trends from in vivo/ex vivo Test Strategies for Application in the Hand Microbiome (손소독제(겔형, 액제형, 와이프형)의 효능 평가법 개선: 평가 전략 연구 사례 및 손 균총 정보 활용 등 최근 동향)

  • Yun O;Ji Seop Son;Han Sol Park;Young Hoon Lee;Jin Song Shin;Da som Park;Eun NamGung;Tae Jin Cho
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • Skin sanitizers are effective in killing or removing pathogenic microbial contaminants from the skin of food handlers, and the progressive growth of consumer interest in personal hygiene tends to drive product diversification. This review covers the advances in the application of efficacy tests for hand sanitizers to suggest future perspectives to establish an assessment system that is optimized to each product type (gel, liquid, and wipes). Previous research on the in vivo simulative test of actual consumer use has adopted diverse experimental conditions regardless of the product type. This highlights the importance of establishing optimal test protocols specialized for the compositional characteristics of sanitizers through the comparative analysis of test methods. Although the operational conditions of the mechanical actions associated with wiping can affect the efficacy of the removal and/or the inactivation of target microorganisms from the skin's surface, currently there is a lack of standardized use patterns for the exposure of hand sanitizing wipes to skin. Thus, major determinants affecting the results from each step of the overall assessment procedures [pre-treatment - exposure of sanitizers - microbial recovery] should be identified to modify current protocols and develop novel test methods. The ex vivo test, designed to overcome the limited reproducibility of in vivo human trials, is also expected to replicate the environment for the contact of sanitizers targeting skin microorganisms. Recent progress in the area of skin microbiome research revealed distinct microbial characteristics and distribution patterns after the application of sanitizers on hands to establish the test methods with the perspectives on the antimicrobial effects at the community level. The future perspectives presented in this study on the improvement of efficacy test methods for hand sanitizers can also contribute to public health and food safety through the commercialization of effective sanitizer products.

A Study on the Implications of Korea Through the Policy Analysis of AI Start-up Companies in Major Countries (주요국 AI 창업기업 정책 분석을 통한 국내 시사점 연구)

  • Kim, Dong Jin;Lee, Seong Yeob
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.2
    • /
    • pp.215-235
    • /
    • 2024
  • As artificial intelligence (AI) technology is recognized as a key technology that will determine future national competitiveness, competition for AI technology and industry promotion policies in major countries is intensifying. This study aims to present implications for domestic policy making by analyzing the policies of major countries on the start-up of AI companies, which are the basis of the AI industry ecosystem. The top four countries and the EU for the number of new investment attraction companies in the 2023 AI Index announced by the HAI Research Institute at Stanford University in the United States were selected, The United States enacted the National AI Initiative Act (NAIIA) in 2021. Through this law, The US Government is promoting continued leadership in the United States in AI R&D, developing reliable AI systems in the public and private sectors, building an AI system ecosystem across society, and strengthening DB management and access to AI policies conducted by all federal agencies. In the 14th Five-Year (2021-2025) Plan and 2035 Long-term Goals held in 2021, China has specified AI as the first of the seven strategic high-tech technologies, and is developing policies aimed at becoming the No. 1 AI global powerhouse by 2030. The UK is investing in innovative R&D companies through the 'Future Fund Breakthrough' in 2021, and is expanding related investments by preparing national strategies to leap forward as AI leaders, such as the implementation plan of the national AI strategy in 2022. Israel is supporting technology investment in start-up companies centered on the Innovation Agency, and the Innovation Agency is leading mid- to long-term investments of 2 to 15 years and regulatory reforms for new technologies. The EU is strengthening its digital innovation hub network and creating the InvestEU (European Strategic Investment Fund) and AI investment fund to support the use of AI by SMEs. This study aims to contribute to analyzing the policies of major foreign countries in making AI company start-up policies and providing a basis for Korea's strategy search. The limitations of the study are the limitations of the countries to be analyzed and the failure to attempt comparative analysis of the policy environments of the countries under the same conditions.

  • PDF

A Study on Intelligent Value Chain Network System based on Firms' Information (기업정보 기반 지능형 밸류체인 네트워크 시스템에 관한 연구)

  • Sung, Tae-Eung;Kim, Kang-Hoe;Moon, Young-Su;Lee, Ho-Shin
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.67-88
    • /
    • 2018
  • Until recently, as we recognize the significance of sustainable growth and competitiveness of small-and-medium sized enterprises (SMEs), governmental support for tangible resources such as R&D, manpower, funds, etc. has been mainly provided. However, it is also true that the inefficiency of support systems such as underestimated or redundant support has been raised because there exist conflicting policies in terms of appropriateness, effectiveness and efficiency of business support. From the perspective of the government or a company, we believe that due to limited resources of SMEs technology development and capacity enhancement through collaboration with external sources is the basis for creating competitive advantage for companies, and also emphasize value creation activities for it. This is why value chain network analysis is necessary in order to analyze inter-company deal relationships from a series of value chains and visualize results through establishing knowledge ecosystems at the corporate level. There exist Technology Opportunity Discovery (TOD) system that provides information on relevant products or technology status of companies with patents through retrievals over patent, product, or company name, CRETOP and KISLINE which both allow to view company (financial) information and credit information, but there exists no online system that provides a list of similar (competitive) companies based on the analysis of value chain network or information on potential clients or demanders that can have business deals in future. Therefore, we focus on the "Value Chain Network System (VCNS)", a support partner for planning the corporate business strategy developed and managed by KISTI, and investigate the types of embedded network-based analysis modules, databases (D/Bs) to support them, and how to utilize the system efficiently. Further we explore the function of network visualization in intelligent value chain analysis system which becomes the core information to understand industrial structure ystem and to develop a company's new product development. In order for a company to have the competitive superiority over other companies, it is necessary to identify who are the competitors with patents or products currently being produced, and searching for similar companies or competitors by each type of industry is the key to securing competitiveness in the commercialization of the target company. In addition, transaction information, which becomes business activity between companies, plays an important role in providing information regarding potential customers when both parties enter similar fields together. Identifying a competitor at the enterprise or industry level by using a network map based on such inter-company sales information can be implemented as a core module of value chain analysis. The Value Chain Network System (VCNS) combines the concepts of value chain and industrial structure analysis with corporate information simply collected to date, so that it can grasp not only the market competition situation of individual companies but also the value chain relationship of a specific industry. Especially, it can be useful as an information analysis tool at the corporate level such as identification of industry structure, identification of competitor trends, analysis of competitors, locating suppliers (sellers) and demanders (buyers), industry trends by item, finding promising items, finding new entrants, finding core companies and items by value chain, and recognizing the patents with corresponding companies, etc. In addition, based on the objectivity and reliability of the analysis results from transaction deals information and financial data, it is expected that value chain network system will be utilized for various purposes such as information support for business evaluation, R&D decision support and mid-term or short-term demand forecasting, in particular to more than 15,000 member companies in Korea, employees in R&D service sectors government-funded research institutes and public organizations. In order to strengthen business competitiveness of companies, technology, patent and market information have been provided so far mainly by government agencies and private research-and-development service companies. This service has been presented in frames of patent analysis (mainly for rating, quantitative analysis) or market analysis (for market prediction and demand forecasting based on market reports). However, there was a limitation to solving the lack of information, which is one of the difficulties that firms in Korea often face in the stage of commercialization. In particular, it is much more difficult to obtain information about competitors and potential candidates. In this study, the real-time value chain analysis and visualization service module based on the proposed network map and the data in hands is compared with the expected market share, estimated sales volume, contact information (which implies potential suppliers for raw material / parts, and potential demanders for complete products / modules). In future research, we intend to carry out the in-depth research for further investigating the indices of competitive factors through participation of research subjects and newly developing competitive indices for competitors or substitute items, and to additively promoting with data mining techniques and algorithms for improving the performance of VCNS.

A Study on Market Size Estimation Method by Product Group Using Word2Vec Algorithm (Word2Vec을 활용한 제품군별 시장규모 추정 방법에 관한 연구)

  • Jung, Ye Lim;Kim, Ji Hui;Yoo, Hyoung Sun
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.1-21
    • /
    • 2020
  • With the rapid development of artificial intelligence technology, various techniques have been developed to extract meaningful information from unstructured text data which constitutes a large portion of big data. Over the past decades, text mining technologies have been utilized in various industries for practical applications. In the field of business intelligence, it has been employed to discover new market and/or technology opportunities and support rational decision making of business participants. The market information such as market size, market growth rate, and market share is essential for setting companies' business strategies. There has been a continuous demand in various fields for specific product level-market information. However, the information has been generally provided at industry level or broad categories based on classification standards, making it difficult to obtain specific and proper information. In this regard, we propose a new methodology that can estimate the market sizes of product groups at more detailed levels than that of previously offered. We applied Word2Vec algorithm, a neural network based semantic word embedding model, to enable automatic market size estimation from individual companies' product information in a bottom-up manner. The overall process is as follows: First, the data related to product information is collected, refined, and restructured into suitable form for applying Word2Vec model. Next, the preprocessed data is embedded into vector space by Word2Vec and then the product groups are derived by extracting similar products names based on cosine similarity calculation. Finally, the sales data on the extracted products is summated to estimate the market size of the product groups. As an experimental data, text data of product names from Statistics Korea's microdata (345,103 cases) were mapped in multidimensional vector space by Word2Vec training. We performed parameters optimization for training and then applied vector dimension of 300 and window size of 15 as optimized parameters for further experiments. We employed index words of Korean Standard Industry Classification (KSIC) as a product name dataset to more efficiently cluster product groups. The product names which are similar to KSIC indexes were extracted based on cosine similarity. The market size of extracted products as one product category was calculated from individual companies' sales data. The market sizes of 11,654 specific product lines were automatically estimated by the proposed model. For the performance verification, the results were compared with actual market size of some items. The Pearson's correlation coefficient was 0.513. Our approach has several advantages differing from the previous studies. First, text mining and machine learning techniques were applied for the first time on market size estimation, overcoming the limitations of traditional sampling based- or multiple assumption required-methods. In addition, the level of market category can be easily and efficiently adjusted according to the purpose of information use by changing cosine similarity threshold. Furthermore, it has a high potential of practical applications since it can resolve unmet needs for detailed market size information in public and private sectors. Specifically, it can be utilized in technology evaluation and technology commercialization support program conducted by governmental institutions, as well as business strategies consulting and market analysis report publishing by private firms. The limitation of our study is that the presented model needs to be improved in terms of accuracy and reliability. The semantic-based word embedding module can be advanced by giving a proper order in the preprocessed dataset or by combining another algorithm such as Jaccard similarity with Word2Vec. Also, the methods of product group clustering can be changed to other types of unsupervised machine learning algorithm. Our group is currently working on subsequent studies and we expect that it can further improve the performance of the conceptually proposed basic model in this study.

Current Status and Perspective and Future Task in Korea of Crop Genetic Transformation (작물형질전환의 현황과 한국내의 발전전망 및 과제)

  • Harn, Chee-Hark
    • Journal of Plant Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.171-184
    • /
    • 2006
  • According to ISAAA report, the global area of genetically modified (GM) crops increased more than 50 fold during the ten-year period from 1996 to 2005 with a sustained double-digit growth rate of 10%. This biotechnology adoption is one of the highest rates of technology adoption in agriculture history and this phenomenon indicates that the industrial value of the GM crops is highly perspective. In addition, the year 2010, 60% of cereal seeds in the global market would be GM or biotechnology related seeds so that the GM crop regards as the second green revolution that could provide a huge impact to food and agriculture. Nevertheless, there has not been any GM variety ever successfully commercialized in Korea and even none of the GM crops has ever been approved for safety testing by risk assessment. This seems that Korean agriculture industry might be indeed lost in the war of future seed market. However, lots of evidence show that Korean scientists have established advanced technologies and protocols to develop GM crops for last 20 years. Actually there have been many cases of successful transformation of crops that were previously known very difficult in transforming. Therefore, Korean agbiotechnology arena firmly holds an infrastructure for developing GM crops with a superior technology. Then what were the problems? Why has even a single GM crop not been commercialized in Korea? The tardiness shown by business in adopting the GM crop is caused by many factors: academical weakness, poor research funding, short knowledge of risk assessment, public concern, no successful experience, lack of professional leaders on GM variety development, lack of systems toward industrialization and inappropriate target transgenes from the beginning. In order to catch up in the race for the new green industry, each one of us in private sectors alongside academia and national research institutes needs to focus altogether on what can be done best in terms of choosing crops, investing fund and establishing a road map for commercialization of GM crops.