• Title/Summary/Keyword: Public Dataset

Search Result 253, Processing Time 0.025 seconds

Screen-shot Image Demorieing Using Multiple Domain Learning (다중 도메인 학습을 이용한 화면 촬영 영상 내 모아레 무늬 제거 기법)

  • Park, Hyunkook;Vien, An Gia;Lee, Chul
    • Journal of Broadcast Engineering
    • /
    • v.26 no.1
    • /
    • pp.3-13
    • /
    • 2021
  • We propose a moire artifacts removal algorithm for screen-shot images using multiple domain learning. First, we estimate clean preliminary images by exploiting complementary information of the moire artifacts in pixel value and frequency domains. Next, we estimate a clean edge map of the input moire image by developing a clean edge predictor. Then, we refine the pixel and frequency domain outputs to further improve the quality of the results using the estimated edge map as the guide information. Finally, the proposed algorithm obtains the final result by merging the two refined results. Experimental results on a public dataset demonstrate that the proposed algorithm outperforms conventional algorithms in quantitative and qualitative comparison.

A Stepwise Rating Prediction Method for Recommender Systems (추천 시스템을 위한 단계적 평가치 예측 방안)

  • Lee, Soojung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.183-188
    • /
    • 2021
  • Collaborative filtering based recommender systems are currently indispensable function of commercial systems in various fields, being a useful service by providing customized products that users will prefer. However, there is a high possibility that the prediction of preferrable products is inaccurate, when the user's rating data are insufficient. In order to overcome this drawback, this study suggests a stepwise method for prediction of product ratings. If the application conditions of the prediction method corresponding to each step are not satisfied, the method of the next step is applied. To evaluate the performance of the proposed method, experiments using a public dataset are conducted. As a result, our method significantly improves prediction and precision performance of collaborative filtering systems employing various conventional similarity measures and outperforms performance of the previous methods for solving rating data sparsity.

Epileptic Seizure Detection Using CNN Ensemble Models Based on Overlapping Segments of EEG Signals (뇌파의 중첩 분할에 기반한 CNN 앙상블 모델을 이용한 뇌전증 발작 검출)

  • Kim, Min-Ki
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.587-594
    • /
    • 2021
  • As the diagnosis using encephalography(EEG) has been expanded, various studies have been actively performed for classifying EEG automatically. This paper proposes a CNN model that can effectively classify EEG signals acquired from healthy persons and patients with epilepsy. We segment the EEG signals into sub-signals with smaller dimension to augment the EEG data that is necessary to train the CNN model. Then the sub-signals are segmented again with overlap and they are used for training the CNN model. We also propose ensemble strategy in order to improve the classification accuracy. Experimental result using public Bonn dataset shows that the CNN can detect the epileptic seizure with the accuracy above 99.0%. It also shows that the ensemble method improves the accuracy of 3-class and 5-class EEG classification.

Adaptive low-resolution palmprint image recognition based on channel attention mechanism and modified deep residual network

  • Xu, Xuebin;Meng, Kan;Xing, Xiaomin;Chen, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.757-770
    • /
    • 2022
  • Palmprint recognition has drawn increasingly attentions in the past decade due to its uniqueness and reliability. Traditional palmprint recognition methods usually use high-resolution images as the identification basis so that they can achieve relatively high precision. However, high-resolution images mean more computation cost in the recognition process, which usually cannot be guaranteed in mobile computing. Therefore, this paper proposes an improved low-resolution palmprint image recognition method based on residual networks. The main contributions include: 1) We introduce a channel attention mechanism to refactor the extracted feature maps, which can pay more attention to the informative feature maps and suppress the useless ones. 2) The ResStage group structure proposed by us divides the original residual block into three stages, and we stabilize the signal characteristics before each stage by means of BN normalization operation to enhance the feature channel. Comparison experiments are conducted on a public dataset provided by the Hong Kong Polytechnic University. Experimental results show that the proposed method achieve a rank-1 accuracy of 98.17% when tested on low-resolution images with the size of 12dpi, which outperforms all the compared methods obviously.

SAR Recognition of Target Variants Using Channel Attention Network without Dimensionality Reduction (차원축소 없는 채널집중 네트워크를 이용한 SAR 변형표적 식별)

  • Park, Ji-Hoon;Choi, Yeo-Reum;Chae, Dae-Young;Lim, Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.219-230
    • /
    • 2022
  • In implementing a robust automatic target recognition(ATR) system with synthetic aperture radar(SAR) imagery, one of the most important issues is accurate classification of target variants, which are the same targets with different serial numbers, configurations and versions, etc. In this paper, a deep learning network with channel attention modules is proposed to cope with the recognition problem for target variants based on the previous research findings that the channel attention mechanism selectively emphasizes the useful features for target recognition. Different from other existing attention methods, this paper employs the channel attention modules without dimensionality reduction along the channel direction from which direct correspondence between feature map channels can be preserved and the features valuable for recognizing SAR target variants can be effectively derived. Experiments with the public benchmark dataset demonstrate that the proposed scheme is superior to the network with other existing channel attention modules.

Artificial neural fuzzy system and monitoring the process via IoT for optimization synthesis of nano-size polymeric chains

  • Hou, Shihao;Qiao, Luyu;Xing, Lumin
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.375-386
    • /
    • 2022
  • Synthesis of acrylate-based dispersion resins involves many parameters including temperature, ingredients concentrations, and rate of adding ingredients. Proper controlling of these parameters results in a uniform nano-size chain of polymer on one side and elimination of hazardous residual monomer on the other side. In this study, we aim to screen the process parameters via Internet of Things (IoT) to ensure that, first, the nano-size polymeric chains are in an acceptable range to acquire high adhesion property and second, the remaining hazardous substance concentration is under the minimum value for safety of public and personnel health. In this regard, a set of experiments is conducted to observe the influences of the process parameters on the size and dispersity of polymer chain and residual monomer concentration. The obtained dataset is further used to train an Adaptive Neural network Fuzzy Inference System (ANFIS) to achieve a model that predicts these two output parameters based on the input parameters. Finally, the ANFIS will return values to the automation system for further decisions on parameter adjustment or halting the process to preserve the health of the personnel and final product consumers as well.

Impacts of label quality on performance of steel fatigue crack recognition using deep learning-based image segmentation

  • Hsu, Shun-Hsiang;Chang, Ting-Wei;Chang, Chia-Ming
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.207-220
    • /
    • 2022
  • Structural health monitoring (SHM) plays a vital role in the maintenance and operation of constructions. In recent years, autonomous inspection has received considerable attention because conventional monitoring methods are inefficient and expensive to some extent. To develop autonomous inspection, a potential approach of crack identification is needed to locate defects. Therefore, this study exploits two deep learning-based segmentation models, DeepLabv3+ and Mask R-CNN, for crack segmentation because these two segmentation models can outperform other similar models on public datasets. Additionally, impacts of label quality on model performance are explored to obtain an empirical guideline on the preparation of image datasets. The influence of image cropping and label refining are also investigated, and different strategies are applied to the dataset, resulting in six alternated datasets. By conducting experiments with these datasets, the highest mean Intersection-over-Union (mIoU), 75%, is achieved by Mask R-CNN. The rise in the percentage of annotations by image cropping improves model performance while the label refining has opposite effects on the two models. As the label refining results in fewer error annotations of cracks, this modification enhances the performance of DeepLabv3+. Instead, the performance of Mask R-CNN decreases because fragmented annotations may mistake an instance as multiple instances. To sum up, both DeepLabv3+ and Mask R-CNN are capable of crack identification, and an empirical guideline on the data preparation is presented to strengthen identification successfulness via image cropping and label refining.

Seasonal Weather Factors and Sensibility Change Relationship via Textmining

  • Yeo, Hyun-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.219-224
    • /
    • 2022
  • The Korea Meteorological Administration(KMA) has been released life-related indexes such as 'Life industrial weather information' and 'Safety weather information' while other countries' meteorological administrations have been made 'Human-biometeorology' and 'Health meteorology' indexes that concern human sensibility effections to diverse criteria. Although human sensibility changes have been studied in psychological research criteria with diverse and innumerous application areas, there are not enough studies that make data mining based validation of sensibility change factors. In this research I made models to estimate sensibility change caused by weather factors such as temperature and humidity, and validated by collecting sensibility data from SNS text crawling and weather data from KMA public dataset. By Logistic Regression, I clarify factors affecting sensibility changes.

Machine Learning for Flood Prediction in Indonesia: Providing Online Access for Disaster Management Control

  • Reta L. Puspasari;Daeung Yoon;Hyun Kim;Kyoung-Woong Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.1
    • /
    • pp.65-73
    • /
    • 2023
  • As one of the most vulnerable countries to floods, there should be an increased necessity for accurate and reliable flood forecasting in Indonesia. Therefore, a new prediction model using a machine learning algorithm is proposed to provide daily flood prediction in Indonesia. Data crawling was conducted to obtain daily rainfall, streamflow, land cover, and flood data from 2008 to 2021. The model was built using a Random Forest (RF) algorithm for classification to predict future floods by inputting three days of rainfall rate, forest ratio, and stream flow. The accuracy, specificity, precision, recall, and F1-score on the test dataset using the RF algorithm are approximately 94.93%, 68.24%, 94.34%, 99.97%, and 97.08%, respectively. Moreover, the AUC (Area Under the Curve) of the ROC (Receiver Operating Characteristics) curve results in 71%. The objective of this research is providing a model that predicts flood events accurately in Indonesian regions 3 months prior the day of flood. As a trial, we used the month of June 2022 and the model predicted the flood events accurately. The result of prediction is then published to the website as a warning system as a form of flood mitigation.

The Effect of Eco-Friendly Interior Designs in the Urban Hotel To Attract Potential Customers

  • Soo-Hee LEE
    • The Journal of Industrial Distribution & Business
    • /
    • v.14 no.5
    • /
    • pp.19-29
    • /
    • 2023
  • Purpose: The hospitality sector is vital to economic development, especially in metropolitan regions, where hotels are a pivotal factor in drawing in leisure and corporate visitors. Despite the potential advantages of urban hotels, there is a gap in empirical studies on the impacts of eco-friendly interior design on hotel appeal and guest behavior. Therefore, this study aims to fill out the research gap. Research design, data and methodology: This study employed a review of the literature systematically as its research design. The study's data collection technique involves exploring peer-reviewed journals through electronic databases like Scopus, and Web of Science. The present author double-checked the quality of instrument for all usable dataset. Results: Prior literature has stated a strong linkage between green interior design in urban hotels and customer behavior and hotel attractiveness. Using environmentally conscious methods, hotels can enhance the quality of their indoor atmosphere, preserve energy and water supplies, and establish a favorable public perception that appeals to environmentally aware consumers, thereby improving their overall experience and contentment. Conclusions: This study concludes that creating indoor spaces with environmental factors in mind could lead to a more enjoyable and beneficial atmosphere for hotel visitors and adopting a sustainability-oriented approach to hotel design and operations could attract potential customers.