• Title/Summary/Keyword: Public Brands

Search Result 113, Processing Time 0.023 seconds

The Effect of Corporate SNS Marketing on User Behavior: Focusing on Facebook Fan Page Analytics (기업의 SNS 마케팅 활동이 이용자 행동에 미치는 영향: 페이스북 팬페이지 애널리틱스를 중심으로)

  • Jeon, Hyeong-Jun;Seo, Bong-Goon;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.75-95
    • /
    • 2020
  • With the growth of social networks, various forms of SNS have emerged. Based on various motivations for use such as interactivity, information exchange, and entertainment, SNS users are also on the fast-growing trend. Facebook is the main SNS channel, and companies have started using Facebook pages as a public relations channel. To this end, in the early stages of operation, companies began to secure a number of fans, and as a result, the number of corporate Facebook fans has recently increased to as many as millions. from a corporate perspective, Facebook is attracting attention because it makes it easier for you to meet the customers you want. Facebook provides an efficient advertising platform based on the numerous data it has. Advertising targeting can be conducted using their demographic characteristics, behavior, or contact information. It is optimized for advertisements that can expose information to a desired target, so that results can be obtained more effectively. it rethink and communicate corporate brand image to customers through contents. The study was conducted through Facebook advertising data, and could be of great help to business people working in the online advertising industry. For this reason, the independent variables used in the research were selected based on the characteristics of the content that the actual business is concerned with. Recently, the company's Facebook page operation goal is to go beyond securing the number of fan pages, branding to promote its brand, and further aiming to communicate with major customers. the main figures for this assessment are Facebook's 'OK', 'Attachment', 'Share', and 'Number of Click' which are the dependent variables of this study. in order to measure the outcome of the target, the consumer's response is set as a key measurable key performance indicator (KPI), and a strategy is set and executed to achieve this. Here, KPI uses Facebook's ad numbers 'reach', 'exposure', 'like', 'share', 'comment', 'clicks', and 'CPC' depending on the situation. in order to achieve the corresponding figures, the consideration of content production must be prior, and in this study, the independent variables were organized by dividing into three considerations for content production into three. The effects of content material, content structure, and message styles on Facebook's user behavior were analyzed using regression analysis. Content materials are related to the content's difficulty, company relevance, and daily involvement. According to existing research, it was very important how the content would attract users' interest. Content could be divided into informative content and interesting content. Informational content is content related to the brand, and information exchange with users is important. Interesting content is defined as posts that are not related to brands related to interesting movies or anecdotes. Based on this, this study started with the assumption that the difficulty, company relevance, and daily involvement have an effect on the dependent variable. In addition, previous studies have found that content types affect Facebook user activity. I think it depends on the combination of photos and text used in the content. Based on this study, the actual photos were used and the hashtag and independent variables were also examined. Finally, we focused on the advertising message. In the previous studies, the effect of advertising messages on users was different depending on whether they were narrative or non-narrative, and furthermore, the influence on message intimacy was different. In this study, we conducted research on the behavior that Facebook users' behavior would be different depending on the language and formality. For dependent variables, 'OK' and 'Full Click Count' are set by every user's action on the content. In this study, we defined each independent variable in the existing study literature and analyzed the effect on the dependent variable, and found that 'good' factors such as 'self association', 'actual use', and 'hidden' are important. Could. Material difficulties', 'actual participation' and 'large scale * difficulties'. In addition, variables such as 'Self Connect', 'Actual Engagement' and 'Sexual Sexual Attention' have been shown to have a significant impact on 'Full Click'. It is expected that through research results, it is possible to contribute to the operation and production strategy of company Facebook operators and content creators by presenting a content strategy optimized for the purpose of the content. In this study, we defined each independent variable in the existing research literature and analyzed its effect on the dependent variable, and we could see that factors on 'good' were significant such as 'self-association', 'reality use', 'concernal material difficulty', 'real-life involvement' and 'massive*difficulty'. In addition, variables such as 'self-connection', 'real-life involvement' and 'formative*attention' were shown to have significant effects for 'full-click'. Through the research results, it is expected that by presenting an optimized content strategy for content purposes, it can contribute to the operation and production strategy of corporate Facebook operators and content producers.

Mediating Roles of Attachment for Information Sharing in Social Media: Social Capital Theory Perspective (소셜 미디어에서 정보공유를 위한 애착의 매개역할: 사회적 자본이론 관점)

  • Chung, Namho;Han, Hee Jeong;Koo, Chulmo
    • Asia pacific journal of information systems
    • /
    • v.22 no.4
    • /
    • pp.101-123
    • /
    • 2012
  • Currently, Social Media, it has widely a renown keyword and its related social trends and businesses have been fastly applied into various contexts. Social media has become an important research area for scholars interested in online technologies and cyber space and their social impacts. Social media is not only including web-based services but also mobile-based application services that allow people to share various style information and knowledge through online connection. Social media users have tendency to common identity- and bond-attachment through interactions such as 'thumbs up', 'reply note', 'forwarding', which may have driven from various factors and may result in delivering information, sharing knowledge, and specific experiences et al. Even further, almost of all social media sites provide and connect unknown strangers depending on shared interests, political views, or enjoyable activities, and other stuffs incorporating the creation of contents, which provides benefits to users. As fast developing digital devices including smartphone, tablet PC, internet based blogging, and photo and video clips, scholars desperately have began to study regarding diverse issues connecting human beings' motivations and the behavioral results which may be articulated by the format of antecedents as well as consequences related to contents that people create via social media. Social media such as Facebook, Twitter, or Cyworld users are more and more getting close each other and build up their relationships by a different style. In this sense, people use social media as tools for maintain pre-existing network, creating new people socially, and at the same time, explicitly find some business opportunities using personal and unlimited public networks. In terms of theory in explaining this phenomenon, social capital is a concept that describes the benefits one receives from one's relationship with others. Thereby, social media use is closely related to the form and connected of people, which is a bridge that can be able to achieve informational benefits of a heterogeneous network of people and common identity- and bonding-attachment which emphasizes emotional benefits from community members or friend group. Social capital would be resources accumulated through the relationships among people, which can be considered as an investment in social relations with expected returns and may achieve benefits from the greater access to and use of resources embedded in social networks. Social media using for their social capital has vastly been adopted in a cyber world, however, there has been little explaining the phenomenon theoretically how people may take advantages or opportunities through interaction among people, why people may interactively give willingness to help or their answers. The individual consciously express themselves in an online space, so called, common identity- or bonding-attachments. Common-identity attachment is the focus of the weak ties, which are loose connections between individuals who may provide useful information or new perspectives for one another but typically not emotional support, whereas common-bonding attachment is explained that between individuals in tightly-knit, emotionally close relationship such as family and close friends. The common identify- and bonding-attachment are mainly studying on-offline setting, which individual convey an impression to others that are expressed to own interest to others. Thus, individuals expect to meet other people and are trying to behave self-presentation engaging in opposite partners accordingly. As developing social media, individuals are motivated to disclose self-disclosures of open and honest using diverse cues such as verbal and nonverbal and pictorial and video files to their friends as well as passing strangers. Social media context, common identity- and bond-attachment for self-presentation seems different compared with face-to-face context. In the realm of social media, social users look for self-impression by posting text messages, pictures, video files. Under the digital environments, people interact to work, shop, learn, entertain, and be played. Social media provides increasingly the kinds of intention and behavior in online. Typically, identity and bond social capital through self-presentation is the intentional and tangible component of identity. At social media, people try to engage in others via a desired impression, which can maintain through performing coherent and complementary communications including displaying signs, symbols, brands made of digital stuffs(information, interest, pictures, etc,). In marketing area, consumers traditionally show common-identity as they select clothes, hairstyles, automobiles, logos, and so on, to impress others in any given context in a shopping mall or opera. To examine these social capital and attachment, we combined a social capital theory with an attachment theory into our research model. Our research model focuses on the common identity- and bond-attachment how they are formulated through social capitals: cognitive capital, structural capital, relational capital, and individual characteristics. Thus, we examined that individual online kindness, self-rated expertise, and social relation influence to build common identity- and bond-attachment, and the attachment effects make an impact on both the willingness to help, however, common bond seems not to show directly impact on information sharing. As a result, we discover that the social capital and attachment theories are mainly applicable to the context of social media and usage in the individual networks. We collected sample data of 256 who are using social media such as Facebook, Twitter, and Cyworld and analyzed the suggested hypotheses through the Structural Equation Model by AMOS. This study analyzes the direct and indirect relationship between the social network service usage and outcomes. Antecedents of kindness, confidence of knowledge, social relations are significantly affected to the mediators common identity-and bond attachments, however, interestingly, network externality does not impact, which we assumed that a size of network was a negative because group members would not significantly contribute if the members do not intend to actively interact with each other. The mediating variables had a positive effect on toward willingness to help. Further, common identity attachment has stronger significant on shared information.

  • PDF

Content-based Recommendation Based on Social Network for Personalized News Services (개인화된 뉴스 서비스를 위한 소셜 네트워크 기반의 콘텐츠 추천기법)

  • Hong, Myung-Duk;Oh, Kyeong-Jin;Ga, Myung-Hyun;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.57-71
    • /
    • 2013
  • Over a billion people in the world generate new news minute by minute. People forecasts some news but most news are from unexpected events such as natural disasters, accidents, crimes. People spend much time to watch a huge amount of news delivered from many media because they want to understand what is happening now, to predict what might happen in the near future, and to share and discuss on the news. People make better daily decisions through watching and obtaining useful information from news they saw. However, it is difficult that people choose news suitable to them and obtain useful information from the news because there are so many news media such as portal sites, broadcasters, and most news articles consist of gossipy news and breaking news. User interest changes over time and many people have no interest in outdated news. From this fact, applying users' recent interest to personalized news service is also required in news service. It means that personalized news service should dynamically manage user profiles. In this paper, a content-based news recommendation system is proposed to provide the personalized news service. For a personalized service, user's personal information is requisitely required. Social network service is used to extract user information for personalization service. The proposed system constructs dynamic user profile based on recent user information of Facebook, which is one of social network services. User information contains personal information, recent articles, and Facebook Page information. Facebook Pages are used for businesses, organizations and brands to share their contents and connect with people. Facebook users can add Facebook Page to specify their interest in the Page. The proposed system uses this Page information to create user profile, and to match user preferences to news topics. However, some Pages are not directly matched to news topic because Page deals with individual objects and do not provide topic information suitable to news. Freebase, which is a large collaborative database of well-known people, places, things, is used to match Page to news topic by using hierarchy information of its objects. By using recent Page information and articles of Facebook users, the proposed systems can own dynamic user profile. The generated user profile is used to measure user preferences on news. To generate news profile, news category predefined by news media is used and keywords of news articles are extracted after analysis of news contents including title, category, and scripts. TF-IDF technique, which reflects how important a word is to a document in a corpus, is used to identify keywords of each news article. For user profile and news profile, same format is used to efficiently measure similarity between user preferences and news. The proposed system calculates all similarity values between user profiles and news profiles. Existing methods of similarity calculation in vector space model do not cover synonym, hypernym and hyponym because they only handle given words in vector space model. The proposed system applies WordNet to similarity calculation to overcome the limitation. Top-N news articles, which have high similarity value for a target user, are recommended to the user. To evaluate the proposed news recommendation system, user profiles are generated using Facebook account with participants consent, and we implement a Web crawler to extract news information from PBS, which is non-profit public broadcasting television network in the United States, and construct news profiles. We compare the performance of the proposed method with that of benchmark algorithms. One is a traditional method based on TF-IDF. Another is 6Sub-Vectors method that divides the points to get keywords into six parts. Experimental results demonstrate that the proposed system provide useful news to users by applying user's social network information and WordNet functions, in terms of prediction error of recommended news.