• Title/Summary/Keyword: Pt anode

Search Result 141, Processing Time 0.03 seconds

Electrochemical Generation of Chlorine Dioxide from Sodium Chlorite Using Un-Divided Electrochemical Cell: Effect of Anode Materials (아염소산나트륨의 무격막 전기분해에 의한 이산화염소 생성: 양전극 재질에 따른 영향)

  • Kwon, Tae Ok;Park, Bo Bae;Roh, Hyun Cheul;Moon, Il Shik
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.275-282
    • /
    • 2010
  • A characteristic study of aqueous chlorine dioxide generation from sodium chlorite($NaClO_2$) by an undivided electrochemical cell with different anode materials were performed. $IrO_2$-coated Ti, $RuO_2$-coated Ti and DSA were used as anode materials and Pt-coated Ti electrode was used as cathode. Various electrochemical cell operating parameters such as cell residence time($t_R$), initial feed solution pH, sodium chlorite and sodium chloride(NaCl) concentration and applied current for the generation of chlorine dioxide in an un-divided cell were investigated and optimized. Estimated optimal cell residence times in $IrO_2$-coated Ti, $RuO_2$-coated Ti and DSA anode material systems were around 2.27, 1.52 and 1.52 sec, respectively. Observed optimum initial feed solution pH was around 2.3 in all anode material systems. Optimum sodium chlorite concentrations in $IrO_2$-coated Ti, $RuO_2$-coated Ti and DSA anode systems were around 0.43, 0.43 and 0.32 g/L, respectively. Optimum electrolyte concentration and applied current were around 5.85 g/L and 0.6 A in all anode systems. Current efficiencies of $IrO_2$-coated Ti, $RuO_2$-coated Ti and DSA anode systems under optimum conditions were 79.80, 114.70 and 70.99%, respectively. Obtained energy consumptions for the optimum generation of chlorine dioxide were 1.38, 1.03 and $1.61W{\cdot}hr/g-ClO_2$, respectively.

Fundamental Mechanisms of Platinum Catalyst for Oxygen Reduction Reaction in Fuel Cell: Density Functional Theory Approach (연료전지 산소환원반응 향상 위한 백금 촉매의 구조적 특성: 밀도범함수이론 연구)

  • Kang, Seok Ho;Lee, Chang-Mi;Lim, Dong-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.5
    • /
    • pp.242-248
    • /
    • 2016
  • The overall reaction rate of fuel cell is governed by oxygen reduction reaction (ORR) in the cathode due to its slowest reaction compared to the oxidation of hydrogen in the anode. The ORR efficiency can be readily evaluated by examining the adsorption strength of atomic oxygen on the surface of catalysts (i.e., known as a descriptor) and the adsorption energy can be controlled by transforming the surface geometry of catalysts. In the current study, the effect of the surface geometry of catalysts (i.e., strain effect) on the adsorption strength of atomic oxygen on platinum catalysts was analyzed by using density functional theory (DFT). The optimized lattice constant of Pt ($3.977{\AA}$) was increased and decreased by 1% to apply tensile and compressive strain to the Pt surface. Then the oxygen adsorption strengths on the modified Pt surfaces were compared and the electron charge density of the O-adsorbed Pt surfaces was analyzed. As the interatomic distance increased, the oxygen adsorption strength became stronger and the d-band center of the Pt surface atoms was shifted toward the Fermi level, implying that anti-bonding orbitals were shifted to the conduction band from the valence band (i.e., the anti-bonding between O and Pt was less likely formed). Consequently, enhanced ORR efficiency may be expected if the surface Pt-Pt distance can be reduced by approximately 2~4% compared to the pure Pt owing to the moderately controlled oxygen binding strength for improved ORR.

CO Tolerance Improvement of MEA Using Metal Thin Film by Sputtering Method in PEM Fuel Cell (스퍼터링 공정으로 제조된 금속박막을 이용한 고분자전해질 연료전지 막-전극접합체의 일산화탄소에 대한 내구성 연구)

  • Cho, Yong-Hun;Yoo, Sung-Jong;Cho, Yoon-Hwan;Park, Hyun-Seo;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.279-282
    • /
    • 2007
  • When reformer for fuel cell is used, CO in hydrogen gas leads to a seriously decreased membrane electrode assembly (MEA) performance by catalyst poisoning. The effect of CO on performance of modified MEA by sputtering method is studied in this paper. The experimental results show that sputtered Pt and Ru thin film improve a single cell performance of MEA and sputtered metal thin film has a CO tolerance. The air injection process on anode show improved CO tolerance test result. Moreover, Pt, Ru and PtRu thin film by sputtering had influence on the CO tolerance with air injection process.

Li-free Thin-Film Batteries with Structural Configuration of Pt/LiCoO2/LiPON/Cu and Pt/LiCoO2/LiPON/LiCoO2/Cu (Pt/LiCoO2/LiPON/Cu와 Pt/LiCoO2/LiPON/LiCoO2/Cu 구조를 갖는 Li-free 박막전지)

  • Shin, Min-Seon;Kim, Tae-Yeon;Lee, Sung-Man
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.243-248
    • /
    • 2018
  • All solid state thin film batteries with two types of cell structure, Pt / $LiCoO_2$ / LiPON / Cu and Pt / $LiCoO_2$ / LiPON / $LiCoO_2$ / Cu, are prepared and their electrochemical performances are investigated to evaluate the effect of $LiCoO_2$ interlayer at the interface of LiPON / Cu. The crystallinity of the deposited $LiCoO_2$ thin films is confirmed by XRD and Raman analysis. The crystalline $LiCoO_2$ cathode thin film is obtained and $LiCoO_2$ as the interlayer appears to be amorphous. The surface morphology of Cu current collector after cycling of the batteries is observed by AFM. The presence of a 10 nm-thick layer of $LiCoO_2$ at the interface of LiPON / Cu enhances the interfacial adhesion and reduces the interfacial resistance. As a result, Li plating / stripping at the interface of LiPON / Cu during charge/discharge reaction takes place more uniformly on Cu current collector, while without the interlayer of $LiCoO_2$ at the interface of LiPON / Cu, the Li plating / stripping is localized on current collector. The thin film batteries with the interlayer of $LiCoO_2$ at the interface of LiPON / Cu exhibits enhanced initial coulombic efficiency, reversible capacity and cycling stability. The thickness of the anode current collector Cu also appears to be crucial for electrochemical performances of all solid state thin film batteries.

Molybdenum-Based Electrocatalysts for Direct Alcohol Fuel Cells: A Critical Review

  • Gaurav Kumar Yogesh;Rungsima Yeetsorn;Waritnan Wanchan;Michael Fowler;Kamlesh Yadav;Pankaj Koinkar
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.67-95
    • /
    • 2024
  • Direct alcohol fuel cells (DAFCs) have gained much attention as promising energy conversion devices due to their ability to utilize alcohol as a fuel source. In this regard, Molybdenum-based electrocatalysts (Mo-ECs) have emerged as a substitution for expensive Pt and Ru-based co-catalyst electrode materials in DAFCs, owing to their unique electrochemical properties useful for alcohol oxidation. The catalytic activity of Mo-ECs displays an increase in alcohol oxidation current density by several folds to 1000-2000 mA mgPt-1, compared to commercial Pt and PtRu catalysts of 10-100 mA mgPt-1. In addition, the methanol oxidation peak and onset potential have been significantly reduced by 100-200 mV and 0.5-0.6 V, respectively. The performance of Mo-ECs in both acidic and alkaline media has shown the potential to significantly reduce the Pt loading. This review aims to provide a comprehensive overview of the bifunctional mechanism involved in the oxidation of alcohols and factors affecting the electrocatalytic oxidation of alcohol, such as synthesis method, structural properties, and catalytic support materials. Furthermore, the challenges and prospects of Mo-ECs for DAFCs anode materials are discussed. This in-depth review serves as valuable insight toward enhancing the performance and efficiency of DAFC by employing Mo-ECs.

Decolorization of a Rhodamine B Using Ru-graphite Electrode (Ru-흑연 전극을 이용한 Rhodamine B의 색 제거)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.17 no.5
    • /
    • pp.547-553
    • /
    • 2008
  • For the RhB removal from the wastewater, electrochemical method was adapted to this study. Three dimensionally stable anode (Pt, Ir and Ru) and graphite and Ru cathode were used. In order to identify decolorization, the effects of electrode, current density, electrolyte and air flow rate were investigated. The effects of electrode material, current, electrolyte concentration and air flow rate were investigated on the decolorization of RhB. Electro-Fenton's reaction was evaluated by added $Fe^{2+}$ and $H_2O_2$ generated by the graphite cathode. Performance for RhB decolorization of the four electrode systems lay in: Ru-graphite > Ru-Ru > Ir-graphite > Pt-graphite. A complete color removal was obtained for RhB (30 mg/L) at the end of 30 min of electrolysis under optimum operations of 2 g/L NaCl concentration and 2 A current. $Fe^{2+}$ addition increased initial reaction and decreased final RhB concentration. However the effect was not high.

Determination of Pd(II) and Pt(II) Metal Cyano Complexes Using Capillary Electrophoresis

  • Lee, Hue-Jin;Lee, Sang-Ho;Chung, Koo-Soon;Lee, Kwang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.11
    • /
    • pp.945-949
    • /
    • 1994
  • Mixtures of cyano complexes of palladium(II) and platinum(II) were separated by capillary electrophoresis using a fused silica capillary as a separation column and 30 mM phosphate buffer (pH 7) containing 15 wt. % acetonitrile as a running buffer. By virtue of the high ionic mobilities of the negatively charged cyano complexes of Pd(II) and Pt(II), they were separated using a cathodic injection and anodic detection scheme. The metal complexes eluted through the capillary were detected by direct UV absorption at 214 nm. A linear relationship between peak area and concentration was obtained for both ions and the detection limit was lower than $10^{-14}$ mole. The proposed method was applied to real sample, e.g., anode slime obtained from an electrolytic copper refinary, as a method for the simultaneous determination of palladium and platinum.

Polymer Materials for Polymer Electrolyte Fuel Cells: Sulfonated Poly(ether sulfone)s for Fuel Cell Membranes

  • Kim, H.J.;Lee, S.Y.;Cho, E.;Ha, H.Y.;Oh, I.H.;Lim, T.H.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.185-185
    • /
    • 2006
  • The performances of proton exchange membrane fuel cell (PEMFC), direct formic acid fuel cell (DFAFC) and direct methanol fuel cell (DMFC) with sulfonated poly(ether sulfone) membrane are reported. Pt/C was coated on the membrane directly to fabricate a MEA for PEMFC operation. A single cell test was carried out using $H_2/air$ gases as fuel and oxidant. A current density of $730\;mA/cm^2$ at 0.60 V was obtained at $70^{\circ}C$. Pt-Ru (anode) and Pt (cathode) were coated on the membrane for DMFC operations. It produced $83\;mW/cm^2$ of maximum power density. The sulfonated poly(ether sulfone) membrane was also used for DFAFC operation under several different conditions. It showed good cell performances for several different kinds of polymer electrolyte fuel cell applications.

  • PDF

Perfonnance Evaluation of Single Cell and Stack of PolymerElectrolyte Fuel Cell by Using Transfer Printing Technique

  • KIM, CHANG SOO;CHUN, YOUNG-GAB;PECK, DONG-HYUN;YANG, TAE-HYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.1
    • /
    • pp.19-27
    • /
    • 2000
  • The polymer electrolyte membrane fuel cell (PEMFC) system was developed. In order to enhance the performance of membrane electrode assembly (MEA), the transfer printing method of the electrocatalyst layer on membrane was developed. The $H_2/O_2$ single cell with an electrode area of $50cm^2$ was fabricated and tested using 20 wt.% Pt/C as an electrocatalyst and the commercial and hand-made MEA such as Nafion 115, Hanwha, Dow, Flemion T and Gore Select. The 100-cell PEMFC stack with an active electrode area of $300cm^2$ was designed and fabricated using 40 wt.% Pt/C and 30 wt.% Pt-Ru/C as a cathode and anode electrocatalysts, respectively. The performance of PEMFC system was obtained to be 7kW (250A at 28V) and 3.5kW (70A at 50V) at $80^{\circ}C$ by flowing $H_2/air$ and methanol reformed fuel gas/air, respectively.

  • PDF