• Title/Summary/Keyword: Psychoacoustic model

Search Result 55, Processing Time 0.018 seconds

A Blind Audio Watermarking using the Tonal Characteristic (토널 특성을 이용한 브라인드 오디오 워터마킹)

  • 이희숙;이우선
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.5
    • /
    • pp.816-823
    • /
    • 2003
  • In this paper, we propose a blind audio watermarking using the tonal characteristic. First, we explain the perceptional effect of tonal on the existed researches and shout the experimental result that tonal characteristic is more stable than other characteristics used in previous watermarking studies against several signal processing. On the base of the result, we propose the blind audio watermarking using the relation among the signals on the frequency domain which compose a tonal masker. To evaluate the sound quality of our watermarked audios, we used the SDG(Subjective Diff-Grades) and got the average SDG 0.27. This result says the watermarking using the perceptional effect of tonal is available from the viewpoint of non-perception. And we detected the watermark hits from the watermarked audios which were changed by several signal processing and the detection ratios with exception of the time shift processing were over 98%. About the time shift processing, we applied the new method that searched the most proper position on the time domain and then detected the watermark bits by the ratio of 90%.

  • PDF

A Design and Implementation of the Real-Time MPEG-1 Audio Encoder (실시간 MPEG-1 오디오 인코더의 설계 및 구현)

  • 전기용;이동호;조성호
    • Journal of Broadcast Engineering
    • /
    • v.2 no.1
    • /
    • pp.8-15
    • /
    • 1997
  • In this paper, a real-time operating Motion Picture Experts Group-1 (MPEG-1) audio encoder system is implemented using a TMS320C31 Digital Signal Processor (DSP) chip. The basic operation of the MPEG-1 audio encoder algorithm based on audio layer-2 and psychoacoustic model-1 is first verified by C-language. It is then realized using the Texas Instruments (Tl) assembly in order to reduce the overall execution time. Finally, the actual BSP circuit board for the encoder system is designed and implemented. In the system, the side-modules such as the analog-to-digital converter (ADC) control, the input/output (I/O) control, the bit-stream transmission from the DSP board to the PC and so on, are utilized with a field programmable gate array (FPGA) using very high speed hardware description language (VHDL) codes. The complete encoder system is able to process the stereo audio signal in real-time at the sampling frequency 48 kHz, and produces the encoded bit-stream with the bit-rate 192 kbps. The real-time operation capability of the encoder system and the good quality of the decoded sound are also confirmed using various types of actual stereo audio signals.

  • PDF

A Perceptual Audio Coder Based on Temporal-Spectral Structure (시간-주파수 구조에 근거한 지각적 오디오 부호화기)

  • 김기수;서호선;이준용;윤대희
    • Journal of Broadcast Engineering
    • /
    • v.1 no.1
    • /
    • pp.67-73
    • /
    • 1996
  • In general, the high quality audio coding(HQAC) has the structure of the convertional data compression techniques combined with moodels of human perception. The primary auditory characteristic applied to HQAC is the masking effect in the spectral domain. Therefore spectral techniques such as the subband coding or the transform coding are widely used[1][2]. However no effort has yet been made to apply the temporal masking effect and temporal redundancy removing method in HQAC. The audio data compression method proposed in this paper eliminates statistical and perceptual redundancies in both temporal and spectral domain. Transformed audio signal is divided into packets, which consist of 6 frames. A packet contains 1536 samples($256{\times}6$) :nd redundancies in packet reside in both temporal and spectral domain. Both redundancies are elminated at the same time in each packet. The psychoacoustic model has been improved to give more delicate results by taking into account temporal masking as well as fine spectral masking. For quantization, each packet is divided into subblocks designed to have an analogy with the nonlinear critical bands and to reflect the temporal auditory characteristics. Consequently, high quality of reconstructed audio is conserved at low bit-rates.

  • PDF

Multi-Modal Biometries System for Ubiquitous Sensor Network Environment (유비쿼터스 센서 네트워크 환경을 위한 다중 생체인식 시스템)

  • Noh, Jin-Soo;Rhee, Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.4 s.316
    • /
    • pp.36-44
    • /
    • 2007
  • In this paper, we implement the speech & face recognition system to support various ubiquitous sensor network application services such as switch control, authentication, etc. using wireless audio and image interface. The proposed system is consist of the H/W with audio and image sensor and S/W such as speech recognition algorithm using psychoacoustic model, face recognition algorithm using PCA (Principal Components Analysis) and LDPC (Low Density Parity Check). The proposed speech and face recognition systems are inserted in a HOST PC to use the sensor energy effectively. And improve the accuracy of speech and face recognition, we implement a FEC (Forward Error Correction) system Also, we optimized the simulation coefficient and test environment to effectively remove the wireless channel noises and correcting wireless channel errors. As a result, when the distance that between audio sensor and the source of voice is less then 1.5m FAR and FRR are 0.126% and 7.5% respectively. The face recognition algorithm step is limited 2 times, GAR and FAR are 98.5% and 0.036%.

The Implementation of Multi-Channel Audio Codec for Real-Time operation (실시간 처리를 위한 멀티채널 오디오 코덱의 구현)

  • Hong, Jin-Woo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2E
    • /
    • pp.91-97
    • /
    • 1995
  • This paper describes the implementation of a multi-channel audio codec for HETV. This codec has the features of the 3/2-stereo plus low frequency enhancement, downward compatibility with the smaller number of channels, backward compatibility with the existing 2/0-stereo system(MPEG-1 audio), and multilingual capability. The encoder of this codec consists of 6-channel analog audio input part with the sampling rate of 48 kHz, 4-channel digital audio input part and three TMS320C40 /DSPs. The encoder implements multi-channel audio compression using a human perceptual psychoacoustic model, and has the bit rate reduction to 384 kbit/s without impairment of subjective quality. The decoder consists of 6-channel analog audio output part, 4-channel digital audio output part, and two TMS320C40 DSPs for a decoding procedure. The decoder analyzes the bit stream received with bit rate of 384 kbit/s from the encoder and reproduces the multi-channel audio signals for analog and digital outputs. The multi-processing of this audio codec using multiple DSPs is ensured by high speed transfer of date between DSPs through coordinating communication port activities with DMA coprocessors. Finally, some technical considerations are suggested to realize the problem of real-time operation, which are found out through the implementation of this codec using the MPEG-2 layer II sudio coding algorithm and the use of the hardware architecture with commercial multiple DSPs.

  • PDF