• Title/Summary/Keyword: Psudomonas sp.

Search Result 8, Processing Time 0.021 seconds

Isolation of a Desmutagenic Substance Producing Microorganisms (항변이원성 물질을 생성하는 미생물의 분리방법)

  • 박용일;조문구;정호권
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.1
    • /
    • pp.110-113
    • /
    • 1992
  • In the screening process of anti- or desmutagenic substance from the various microbial metabolites with the method of Ames and Rec-assay, a desmutagenic substance producing bacterial strain which inactivates the mitomycin C-induced mutagenicity was isolated and identified as Psudomonas sp. AM-10.

  • PDF

Antagonistic Role of Chitinase and Antibiotic Produced by Promicromonospora sp. KH-28 toward F.oxysporum (항진균성 방선균 Promicromonospora sp. KH-28이 생산하는 Chitinase와 항생물질에 의한 시드름병균 F. oxysporum의 생육억제)

  • 한길환;이창은;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.5
    • /
    • pp.349-353
    • /
    • 1999
  • Antagonistic Promicromonospora sp. KH-28 isolated from a suppressive soil could produced a chitinase and a antifungal antibiotic for the biocontrol ability. The chitinase and the antibiotic appeared to inhibit plant pathogens of Fusarium oxysporum. Phytophthora capsici, Alternaria kiki, fusarium solani, Stemphylium sp., and Psudomonas fluorescens. the antibiotic produced from the strain was identified as a antifungal substance of 503 dalton having a pyrimidine skeleton with an aliphatic side chain. The Promicromonospora sp. KH-28 was able to suppress effectively F. oxysporum derived-fusarium wilt of red-pepper plant in the pot in vivo test.

  • PDF

Biodegradative Characteristics of Benzoate and m-Toluate by Pseudomonas sp. (Pseudomonas sp.에 의한 Benzoate와 m-Toluate 의 분해특성)

  • 정준영;김교창
    • Journal of Food Hygiene and Safety
    • /
    • v.9 no.4
    • /
    • pp.205-211
    • /
    • 1994
  • From 120 soil and activated sludge, the strains able to grow on benzoate and m-Toluate have been isolated after selective enrichment which were later identified as Psudomonas sp. according to its morphological and biochemical characteristics. Ben-2 strain contained two plasmid DNA having about 120 Kb and below 2.0 Kb by agarose gel electrophoresis. Form the comparative investigation of catechol 1,2-oxygenase and catechol 2,3-oxygenase activities in Ben-2 strain and its cured strain, Ben-2 strain has both of these two enzymes while cured strain has catechol 1,2-oxygenase only.

  • PDF

Nucleotide Sequence and Homology Analysis of phnC Gene Encoding Glutathione S-transferase from Pseudomonas sp.DJ77 (Pseudomonas sp. DJ77에서 Glutathione S-transferase를 암호하는 phnC 유전자의 염기서열과 상동성 분석)

  • 우희종;신명수;김성재;정용제;정안식;박광균;김영창
    • Korean Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.86-91
    • /
    • 1997
  • Pseudomonas sp. DJ77로부터 클로닝된 glutathione S-transferase 유전자(phnC)의 염기서열을 결정하였다. 603bp의 open reading frame(ORF)이 존재하였고 개시코돈 앞에서 Shine-Dalgarno sequence를, 종결코돈 뒤에서는 terminator sequence를 발견하였다. phnC 유전자에서 만들어지는 phnC 단백질은 21,416 Da으로 SDS-polyacrylamide gel 전기영동 결과와 일치하였다. PhnC는 Bulkholderia cepacia LB400, Cycloclasticus oligotrophus RB1의 GST와 각각 53.7%, 49%의 높은 상동성을 나타냈다. 아미노산 서열의 상동성과 필수잔기들의 존재유무로 판단할 때 PhnC GST는 theta class GSTs와 진화적으로 유연관계가 높았지만 alpha, mu, pi, sigma class GSTs에서 구조적, 기능적으로 중요하다고 알려진 아미노산 잔기들이 PhnC GST에도 보존되어 있었다. 또한, phnC 유전자의 위치가 C. oligotrophus RB1, B. cepacia LB400 등의 GST 유전자 위치와 유사하다는 점에서 PhnC 효소는 난분해성 방향족 탄화수소의 분해에 관여하는 것으로 생각된다.

  • PDF

Effects of Nutritional Sources on Degradation of Polychlorinated Biphenyls (PCBs) by Pseudomonas sp. P2 (Pseudomonas sp. P2에 의한 Polychlorinated Biphenyls(PCBs) 분해에 대한 영양원의 영향)

  • 최상기;금정호
    • Journal of Environmental Science International
    • /
    • v.5 no.5
    • /
    • pp.611-617
    • /
    • 1996
  • The effects of nutritional sources on growth of Pseudomonas sp. P2 were investigated in medium containing biphentyl as a carbon source. To determine characterization of Pseudomonas sp. P2, the incubation time was determined to 100 h of the log phase in the growth curve. The optimal compositions for the growth of Pseudomonas sp. P2 degrading polychlorinated biphenyls (PCBs) were 1000 mg/L $NH_4NO_3$, 1000mg/L KH_2PO_4$, 100mg/L MgSO_4$.$7H_2O$, 30mg/L $CaCl_2$.$2H_2O$, 200mg/L NaCl, and 10mg/L $FeSO_4$.$7H_2O$. Pseudomonas sp. P2 showed the degradability of 59.3%, 57.6%, 51.4%, and 48.7% at 500mg/L, 1000mg/L, 1500mg/L, and 2000mg/L of the PCBs within insulating oil after 100 h incubation under the optimum conditions, respectively.

  • PDF

Biodegradation of Medium-chain-length Polyhydroxyalkanoates by Pseudomonas sp. RY-1 (Pseudomonas sp. RY-1에 의한 Medium-chain-length Polyhydroxyalkanoates의 생분해)

  • 류강은;김영백;양영기;이영하
    • Korean Journal of Microbiology
    • /
    • v.36 no.2
    • /
    • pp.84-90
    • /
    • 2000
  • Biodegradation of vanous medium-chain-length polyhydroxyalkanoates (MCL-PHAs) by an extracellular depolymerase system from Pseudomonas sp. RY-1 was investigated under laboratoly conditions. The degradation rate of the polymers was determined by quantitative clem zone technique, enzyme (turbidity) assay, and respirometry assay. Although the enzyme system secreted by Pscudomor~as sp. RY-1 was capable of degrading all MCL-PHAs tested. its secretion was influenced by the availability of secondary carbon sources. The rate of enzymatic degradation of MCL-PHAs was dependent upou the monomeric composition of the polyesters and reduced as the chain lengths of the monomer m t s in the polyesters increased. MCL-PHAs containing C-even monomer units showed faster degradation rate than MCL-PHAs containing C-odd monomer units. Respiration rates of MCL-PHAs with C-even monomer uuts were also much faster than those of MCL-PHAs with C-odd monomer units. The degmdation rate of MCL-PHAs bearing unsaturated substituents was faster than that of mcl-PHAs without functional substituents, which is suggesting the correlation between the degradation rate and the crystallinity of MCL-PHAs.

  • PDF

LABORATORY STUDIES ON MIC OF AISI TYPE 304 STAINLESS STEEL USING BACTERIA ISOLATED FROM A W ASTEWATER TREATMENT SYSTEM

  • Sreekumari, Kurissery R.;Kyozo, Hirotani;Katsuya, Akamatsu;Takashi, Imamichi;Yasushi, Kikuchi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.260-265
    • /
    • 2002
  • Microbiologically influenced Corrosion (MIC) is one of the most deleterious effects of metal microbe interactions. When a fresh metal surface comes in contact with a non-sterile fluid, biofilm formation is ensued. This might result in the initiation of corrosion. The sites and materials where MIC is implicated are versatile. Industries such as shipping, power generation, chemical etc are reported to be affected. The rapid and unexpected failure of AISI type 304 stainless steel was investigated in the laboratory by simulation studies for a period of 4 months. Slime and water samples from the failure site were screened for corrosion causing bacteria. Both aerobic and anaerobic nora were enumerated and identified using PCR techniques. Pseudomonas sp. and Bacillus sp. were the most common aerobic bacteria isolated from the water and slime samples, whilst sulfate reducing bacteria (SRB) were the major anaerobic bacteria. The aerobic bacteria were used for the corrosion experiments in the laboratory. Coupon exposure studies were conducted using a very dilute (0.1%V/V) nutrient broth medium. The coupons after retrieval were observed under a Scanning Electron Microscope (SEM) for the presence of MIC pits. Compared to sterile controls, metal coupons exposed to Pseudomonas sp and Bacillus sp. showed the initiation of severe pitting corrosion. However, amongst these two strains, Psudomonas sp. caused pits in a very short span of 14 days. Towards the end of the experiment, severe pitting was observed in both the cases. The detailed observation of pits showed they vary both in number and shapes. Whilst the coupons exposed to Bacillus sp. showed widely spread scales like pits, those exposed to Pseudomonas sp. showed smaller and circular pits, which had grown in number and size by the end of the experiment. From these results it is inferred that the rapid and unexpected failure of 304 SS might be due to MIC. Pseudonwnas sp. could be considered as the major responsible bacteria that could initiate pits in the metallic structures. As the appearance of pits was different in both the tested strains, it was thought that the mechanisms of pit formation are different. Experiments on these lines are being continued.

  • PDF

Preparation of Aliphatic Polyester by Lipase Catalyzed Transesterificatoin in Anhydrous Organic Solvents (유기용매에서 Lipase에 의한 지방족 폴리에스터의 합성)

  • 박현규;장호남
    • KSBB Journal
    • /
    • v.9 no.3
    • /
    • pp.246-252
    • /
    • 1994
  • Enzyme-catalyzed polycondensatlon reaction of aliphatic polyesters with several repeating units was studied using the biocatalytic activities of lipases from different sources. Porcine pancreatic lipase (PPL) was found to be best in utilizing bls(2,2,2-trichloroethyl) glutarate and 1,4-butanediol as substrafes. The reaction was also catalyzed to some extent by the lipases from Humicola lanuginos and Psudomonas sp. In the series of short-chain diols(C2-C4), bis(2,2,2-trichloroethyl) glutarate was iransesterified fastest with 1,4-butanediol and for the long-chain diols (PEG-300-PEG-1000), the reaction was fastest with PEG-400. With PEGs, only monoesterification product was obtained. PPL functioned well in relatively hydrophilic organic solvents such as tetrahydrofuran(THF), ether and acetonitrile. The reaction rate was accelerated as the reaction temperature was raised from $20^{\circ}C$ to $60^{\circ}C$ while Mn values of the reaction products were not affected by the reaction temperature. End group analysis by NMR showed that Mn values of the polymer were in the range of 1500-4000 daltons.

  • PDF