• Title/Summary/Keyword: Pseudoprogression

Search Result 7, Processing Time 0.02 seconds

Added Value of Contrast Leakage Information over the CBV Value of DSC Perfusion MRI to Differentiate between Pseudoprogression and True Progression after Concurrent Chemoradiotherapy in Glioblastoma Patients

  • Pak, Elena;Choi, Seung Hong;Park, Chul-Kee;Kim, Tae Min;Park, Sung-Hye;Won, Jae-Kyung;Lee, Joo Ho;Lee, Soon-Tae;Hwang, Inpyeong;Yoo, Roh-Eul;Kang, Koung Mi;Yun, Tae Jin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.1
    • /
    • pp.10-19
    • /
    • 2022
  • Purpose: To evaluate whether the added value of contrast leakage information from dynamic susceptibility contrast magnetic resonance imaging (DSC MRI) is a better prognostic imaging biomarker than the cerebral blood volume (CBV) value in distinguishing true progression from pseudoprogression in glioblastoma patients. Materials and Methods: Forty-nine glioblastoma patients who had undergone MRI after concurrent chemoradiotherapy with temozolomide were enrolled in this retrospective study. Twenty features were extracted from the normalized relative CBV (nCBV) and extraction fraction (EF) map of the contrast-enhancing region in each patient. After univariable analysis, we used multivariable stepwise logistic regression analysis to identify significant predictors for differentiating between pseudoprogression and true progression. Receiver operating characteristic (ROC) analysis was employed to determine the best cutoff values for the nCBV and EF features. Finally, leave-one-out cross-validation was used to validate the best predictor in differentiating between true progression and pseudoprogression. Results: Multivariable stepwise logistic regression analysis showed that MGMT (O6-methylguanine-DNA methyltransferase) and EF max were independent differentiating variables (P = 0.004 and P = 0.02, respectively). ROC analysis yielded the best cutoff value of 95.75 for the EF max value for differentiating the two groups (sensitivity, 61%; specificity, 84.6%; AUC, 0.681 ± 0.08; 95% CI, 0.524-0.837; P = 0.03). In the leave-one-out cross-validation of the EF max value, the cross-validated values for predicting true progression and pseudoprogression accuracies were 69.4% and 71.4%, respectively. Conclusion: We demonstrated that contrast leakage information parameter from DSC MRI showed significance in differentiating true progression from pseudoprogression in glioblastoma patients.

Pseudoprogression and Pseudoresponse in the Management of High-Grade Glioma : Optimal Decision Timing According to the Response Assessment of the Neuro-Oncology Working Group

  • Chang, Ji Hyun;Kim, Chae-Yong;Choi, Byung Se;Kim, Yu Jung;Kim, Jae Sung;Kim, In Ah
    • Journal of Korean Neurosurgical Society
    • /
    • v.55 no.1
    • /
    • pp.5-11
    • /
    • 2014
  • Objective : We evaluated pseudoprogression (PsPD) following radiation therapy combined with concurrent temozolomide (TMZ), and we assessed pseudoresponse following anti-angiogenic therapy for patients with recurrent disease using the Response Assessment of the Neuro-Oncology Working Group. Methods : Patients who were pathologically confirmed as having high-grade glioma received radiotherapy with concurrent TMZ followed by adjuvant TMZ. Bevacizumab (Avastin) with CPT-11 were used as a salvage option for cases of radiologic progression. Magnetic resonance imaging (MRI) was routinely performed 1 month after concurrent radiochemotherapy (CRT) and every 3 months thereafter. For cases treated with the bevacizumab-containing regimen for progressive disease, MRI was performed every 2 months. Results : Of 55 patients, 21 (38%) showed radiologic progression within 4 weeks after CRT. Of these patients, 16 (29%) showed progression at second post-CRT MRI (etPD) and five (9%) showed improvement (PsPD). Seven of thirty-four initially non-progressed patients showed progression at the second post-CRT MRI (ltPD). No difference in survival was observed between the etPD and ltPD groups (p=0.595). Five (50%) of ten patients showed a radiological response after salvage bevacizumab therapy. Four of those patients exhibited rapid progression immediately after discontinuation of the drug (drug holiday). Conclusion : Twelve weeks following treatment could be the optimal timing to determine PsPD or true progression. MRI with gadolinium enhancement alone is not sufficient to characterize tumor response or growth. Clinical correlation with adequate follow-up duration and histopathologic validation may be helpful in discriminating PsPD from true progression.

Comparison of Radiological Tumor Response Based on iRECIST and RECIST 1.1 in Metastatic Clear-Cell Renal Cell Carcinoma Patients Treated with Programmed Cell Death-1 Inhibitor Therapy

  • Bingjie Zheng;Ji Hoon Shin;Hailiang Li;Yanqiong Chen;Yuan Guo;Meiyun Wang
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.366-375
    • /
    • 2021
  • Objective: To evaluate the radiological tumor response patterns and compare the response assessments based on immune-based therapeutics Response Evaluation Criteria in Solid Tumors (iRECIST) and RECIST 1.1 in metastatic clear-cell renal cell carcinoma (mccRCC) patients treated with programmed cell death-1 (PD-1) inhibitors. Materials and Methods: All mccRCC patients treated with PD-1 inhibitors at Henan Cancer Hospital, China, between January 2018 and April 2019, were retrospectively studied. A total of 30 mccRCC patients (20 males and 10 females; mean age, 55.6 years; age range, 37-79 years) were analyzed. The target lesions were quantified on consecutive CT scans during therapy using iRECIST and RECIST 1.1. The tumor growth rate was calculated before and after therapy initiation. The response patterns were analyzed, and the differences in tumor response assessments of the two criteria were compared. The intra- and inter-observer variabilities of iRECIST and RECIST 1.1 were also analyzed. Results: The objective response rate throughout therapy was 50% (95% confidence interval [CI]: 32.1-67.9) based on iRECIST and 30% (95% CI: 13.6-46.4) based on RECIST 1.1. The time-to-progression (TTP) based on iRECIST was longer than that based on RECIST 1.1 (median TTP: not reached vs. 170 days, p = 0.04). iRECIST and RECIST 1.1 were discordant in 8 cases, which were evaluated as immune-unconfirmed PD based on iRECIST and PD based on RECIST 1.1. Six patients (20%, 6/30) had pseudoprogression based on iRECIST, of which four demonstrated early pseudoprogression and two had delayed pseudoprogression. Significant differences in the tumor response assessments based on the two criteria were observed (p < 0.001). No patients demonstrated hyperprogression during the study period. Conclusion: Our study confirmed that the iRECIST criteria are more capable of capturing immune-related atypical responses during immunotherapy, whereas conventional RECIST 1.1 may underestimate the benefit of PD-1 inhibitors. Pseudoprogression is not rare in mccRCC patients during PD-1 inhibitor therapy, and it may last for more than the recommended maximum of 8 weeks, indicating a limitation of the current strategy for immune response monitoring.

Immunotherapy-Related Imaging Findings in Patients with Gynecological Malignancies: What Radiologists Need to Know

  • Luca Russo;Giacomo Avesani;Benedetta Gui;Charlotte Marguerite Lucille Trombadori;Vanda Salutari;Maria Teresa Perri;Valerio Di Paola;Elena Rodolfino;Giovanni Scambia;Riccardo Manfredi
    • Korean Journal of Radiology
    • /
    • v.22 no.8
    • /
    • pp.1310-1322
    • /
    • 2021
  • Immunotherapy is an effective treatment option for gynecological malignancies. Radiologists dealing with gynecological patients undergoing treatment with immune checkpoint inhibitors should be aware of unconventional immune-related imaging features for the evaluation of tumor response and immune-related adverse events. In this paper, immune checkpoint inhibitors used for gynecological malignancies and their mechanisms of action are briefly presented. In the second part, patterns of pseudoprogression are illustrated, and different forms of immune-related adverse events are discussed.

The Use of MR Perfusion Imaging in the Evaluation of Tumor Progression in Gliomas

  • Snelling, Brian;Shah, Ashish H.;Buttrick, Simon;Benveniste, Ronald
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • Objective : Diagnosing tumor progression and pseudoprogression remains challenging for many clinicians. Accurate recognition of these findings remains paramount given necessity of prompt treatment. However, no consensus has been reached on the optimal technique to discriminate tumor progression. We sought to investigate the role of magnetic resonance perfusion (MRP) to evaluate tumor progression in glioma patients. Methods : An institutional retrospective review of glioma patients undergoing MRP with concurrent clinical follow up visit was performed. MRP was evaluated in its ability to predict tumor progression, defined clinically or radiographically, at concurrent clinical visit and at follow up visit. The data was then analyzed based on glioma grade and subtype. Resusts : A total of 337 scans and associated clinical visits were reviewed from 64 patients. Sensitivity, specificity, positive and negative predictive value were reported for each tumor subtype and grade. The sensitivity and specificity for high-grade glioma were 60.8% and 87.8% respectively, compared to low-grade glioma which were 85.7% and 89.0% respectively. The value of MRP to assess future tumor progression within 90 days was 46.9% (sensitivity) and 85.0% (specificity). Conclusion : Based on our retrospective review, we concluded that adjunct imaging modalities such as MRP are necessary to help diagnose clinical disease progression. However, there is no clear role for stand-alone surveillance MRP imaging in glioma patients especially to predict future tumor progression. It is best used as an adjunctive measure in patients in whom progression is suspected either clinically or radiographically.

Checkpoint-inhibition in ovarian cancer: rising star or just a dream?

  • Pietzner, Klaus;Nasser, Sara;Alavi, Sara;Darb-Esfahani, Silvia;Passler, Mona;Muallem, Mustafa Zelal;Sehouli, Jalid
    • Journal of Gynecologic Oncology
    • /
    • v.29 no.6
    • /
    • pp.93.1-93.11
    • /
    • 2018
  • The introduction of checkpoint inhibitors revolutionized immuno-oncology. The efficacy of traditional immunotherapeutics, like vaccines and immunostimulants was very limited due to persistent immune-escape strategies of cancer cells. Checkpoint inhibitors target these escape mechanisms and re-direct the immune system to anti-tumor toxicity. Phenomenal results have been reported in entities like melanoma, where no other therapy was able to demonstrate survival benefit, before the introduction of immunotherapeutics. The first experience in ovarian cancer (OC) was reported for nivolumab, a fully human anti-programmed cell death protein 1 (PD1) antibody, in 2015. While the data are extraordinary for a mono-immunotherapeutic agent and very promising, they do not match up to the revolutionary results in entities like melanoma. The key to exceptional treatment response in OC, could be the identification of the most immunogenic patients. We hypothyse that BRCA mutation could be a predictor of improved response in OC. The underlying DNA-repair-deficiancy should result in increased immunogenicity because of higher mutational load and more neoantigen presentation. This hypothesis was not tested to date and should be subject to future trials. The present article gives an overview of the immunologic background of checkpoint inhibition (CI). It presents current data on nivolumab and other checkpoint-inhibitors in solid tumors and OC specifically and depicts important topics in the management of this novel substance group, such as side effect control, diagnostic PD-1/programmed cell death-ligand 1 (PD-L1) expression assessment and management of pseudoprogression.

Evolution of Radiological Treatment Response Assessments for Cancer Immunotherapy: From iRECIST to Radiomics and Artificial Intelligence

  • Nari Kim;Eun Sung Lee;Sang Eun Won;Mihyun Yang;Amy Junghyun Lee;Youngbin Shin;Yousun Ko;Junhee Pyo;Hyo Jung Park;Kyung Won, Kim
    • Korean Journal of Radiology
    • /
    • v.23 no.11
    • /
    • pp.1089-1101
    • /
    • 2022
  • Immunotherapy has revolutionized and opened a new paradigm for cancer treatment. In the era of immunotherapy and molecular targeted therapy, precision medicine has gained emphasis, and an early response assessment is a key element of this approach. Treatment response assessment for immunotherapy is challenging for radiologists because of the rapid development of immunotherapeutic agents, from immune checkpoint inhibitors to chimeric antigen receptor-T cells, with which many radiologists may not be familiar, and the atypical responses to therapy, such as pseudoprogression and hyperprogression. Therefore, new response assessment methods such as immune response assessment, functional/molecular imaging biomarkers, and artificial intelligence (including radiomics and machine learning approaches) have been developed and investigated. Radiologists should be aware of recent trends in immunotherapy development and new response assessment methods.