• Title/Summary/Keyword: Pseudomonas testosteroni

Search Result 17, Processing Time 0.023 seconds

Degradation of Chlorophenols and Phenol Mixtures by Cooperative Activities of Chlorophenol-degrading Strains

  • Bae, Hee-Sung;Cho, Young-Gyun;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.43-48
    • /
    • 1997
  • Three strains capable of degrading a chlorophenol were isolated by selective enrichment from soils contaminated with industrial wastewater. A Pseudomonas solanacearum TCP114 could use 2,4,6-trichlorophenol (TCP) as sole carbon and energy source, while two strains of Pseudomonas testosteroni CPW301 and Arthrobacter ureafaciens CPR706 could use 4-CP. All isolates also grew well on phenol. The degradation of one component by a pure strain was strongly affected by the presence of other compounds in the medium, CPW301 and CPR706 entirely lost the ability to degrade 4-CP and phenol in the presence of TCP. TCP114 also lost the ability to degrade phenol when 4-CP was added to the culture medium. These restrictions on the degradability could be overcome by employing defined mixed cultures (TCP114 and one strain of 4-CP degrading strains). All three components were successfully degraded by defined mixed cultures through their cooperative activities. It was also demonstrated that defined mixed cultures could be immobilized by using calcium alginate for the semi-continuous degradation of the three component mixture. Immobilization could not only accelerate the degradation rate, but also allowed the reuse of the cell mass several times without loss of the cells' degrading capabilities.

  • PDF

$^{15}N$ NMR Relaxation Studies of Backbone Motion of the catalytic Residues in Free and Steroid-bound ${\Delta}^5$-3-Ketosteroid Isomerase

  • Lee, Hee-Cheon;Sunggoo Yun
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.5 no.2
    • /
    • pp.130-137
    • /
    • 2001
  • Backbone dynamics of the catalytic residues in free and steroid-bound $\Delta$$^{5}$ -3- ketosteroid isomerase from Pseudomonas testosteroni has been examined by $^{15}$ N relaxation measurements. The relaxation data were analyzed using the model-free formalism to extract the model-free parameters (S$^2$, $\tau$$_{e}$, and R$_{ex}$). Tyr-34 and Asp-99 exhibit enhanced high-frequency (pico- to nanosecond) internal motions in the free enzyme, which are restricted upon ligand binding, while Asp-38 experiences severe restriction of the internal motions in the fee enzyme, suggesting that Tyr-14 and Asp-99 are more actively involved in the ligand binding than Asp-38. The results also indicate that the H-bond network in the catalytic cavity might be slightly strengthened upon ligand binding, which may have some implications on the enzyme mechanism.he enzyme mechanism.m.

  • PDF

Genetic and Biochemical Characterization of the Biphenyl Dioxygenase from Pseudomonas sp. Strain B4

  • Rodarie, David;Jouanneau, Yves
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.763-771
    • /
    • 2001
  • Biphenyl dioxygenase (BPDO), which catalyzes the first step in the bacterial degradation of biphenyl and polychlorinated biphenyls, was characterized in Pseudomonas sp. B4. The bphA locus containing the four structural genes encoding BPDO were cloned and sequenced. A regulatory gene as well as a putative regulatory sequence were identified upstream of this locus. A transposase-like gene was found within a 1-kb region further upstream, thereby suggesting that the bphA locus may be carried on a transposable element. The three components of the BPDO enzyme have been separately overexpressed and purified from E. coli. The ferredoxin and terminal dioxygenase components showed biochemical properties comparable to those of two previously characterized BPDOs, whereas the ferredoxin reductase exhibited an unusually high lability. The substrate selectivity of BPDO was examined in vivo using resting cell assays performed with mixtures of selected polychlorinated biphenyls. The results indicated that para-substituted congeners were the preferred substrates. In vitro studies were carried out on a BPDO complex where the reductase from strain B4 we replaced by the more stable isoform from Comamonas testosteroni B-356. The BPDO enzyme had a specific activity of $0.26{\pm}0.02 {\mu}mol {min^-1}{mg^-1}\;of\;ISP_{BPH}$ with biphenyl as the substrate. The 2,3-, 4,4'-, and 2,4,4'-chlorobiphenyls were converted to single dihydrodiols, while 2,4'-dichlorobiphenyl gave rise to two dihydrodiols. The current data also indicated that 2,4,4'-trichlorobiphenyl was a better substrate than the 4,4'-dichlorinated congener.

  • PDF

Structure Analysis of pmcABCDEFT Gene Cluster for Degradation of Protocatechuate from Comamonas sp. Strain DJ-12 (Comamonas sp. Strain DJ-12로부터 Protocatechuate의 분해에 관여하는 pmcABCDEFT 유전자군의 구조 분석)

  • Kang Cheol-Hee;Lee Sang-Mhan;Lee Kyoung;Lee Dong-Hun;Kim Chi-Kyung
    • Korean Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.195-200
    • /
    • 2005
  • Comamonas sp. strain DJ-12 is a bacterial isolate capable of degrading of 4-chlorobiphenyl (4CB) as a carbon and energy source. The degradation pathway was characterized as being conducted by consecutive reactions of the meta-degradation of 4CB, hydrolytic dechlorination of 4-chlorobenzoate (4CBA), hydroxylation of 4-hydroxybenzoate, and meta-degradation of protocatechuate to product TCA metabolites. The 6.8 kb fragment from the chromosomal DNA of Comamonas sp. strain DJ-12 included the genes encoding for the meta-degradation of PCA; the genes of protocatechuate 4,5-dioxygenase alpha and beta subunits (pmcA and pmcB), 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase (pmcC), 2-pyrone-4,6-dicarboxylate hydrolase (pmcD), 4-oxalomesaconate (OMA) hydratase(pmcE), 4-oxalocitramalate (OCM) aldolase (pmcF), and transporter gene (pmcT). They were organized in the order of pmcT-pmcE-pmcF-pmcD-pmcA-pmcB-pmcC. The amino acid sequences deduced from the nucleotide sequences of pmcABCDEFT genes from Comamonas sp. strain DJ-12 exhibited 94 to $98\%$ homologies with those of Comamonas testosteroni BR6020 and Pseudomonas ochraceae NGJ1, but only 52 to $74\%$ with homologies Sphingomonas paucimobilis SYK-6, Sphingomonas sp. LB126, and Arthrobacter keyseri 12B.

Characterization and N-Terminal Amino Acid Sequence Analysis of Catechol 2,3-dioxygenase Isolated from the Aniline Degrading Bacterium, Delftia sp. JK-2 (Aniline 분해세균 Delftia sp. JK-2에서 분리된 catechol 2,3-dioxygenase의 특성 및 N-말단 아미노산 서열분석)

  • 황선영;송승열;오계헌
    • Korean Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • The aim of this work was to investigate the characterization and sequence of catechol 2,3-dioxygenase isolated from Delfia sp. JK-2, which could utilize aniline as sole carbon, nitrogen and energy source. In initial experiments, several characteristics of C2,3O separated with ammonium sulfate precipitation, DEAE-sepharose were investigated. Specific activity of C2,3O was approximately 4.72 unit/mg. C2,3O demonstrated its enzyme activity to other substrates, catechol and 4-methylcatechol. The optimum temperature of C2,3O was $$Cu^{2+}$^{\circ}C$, and the optimal pH was approximately 8. Metal ions such as $Ag^{+}$, $Hg^{+}$, and $Cu^{2+}$ showed inhibitory effect on the activity of C2,3O. Molecular weight of the enzyme was determined to approximately 35 kDa by SDS-PAGE. N-terminal amino acid sequence of C2,3O was analyzed as $^{1}MGVMRIG-HASLKVMDMDA- AVRHYENV^{26}$, and exhibited high sequence homology with that of C2,30 from Pseudomonas sp. AW-2, Comamonas sp. JS765, Comamonas testosteroni and Burkholderia sp. RPO07. PCR product was amplified with the primers derived from N-terminal amino acid sequence. In this work, we found that the amino acid sequence of Delftia sp. JK-2 showed high sequence homology of C2,3O from Pseudomonas sp. AW-2 (100%) and Comamonas sp. JS765 (97%).

Occurrence and antibiotic susceptibility of fish bacteria isolated from Oreochromis niloticus (Nile tilapia) and Clarias gariepinus (African catfish) in Uganda

  • Wamala, S.P.;Mugimba, K.K.;Mutoloki, S.;Evensen, O.;Mdegela, R.;Byarugaba, D.K.;Sorum, H.
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.2
    • /
    • pp.6.1-6.10
    • /
    • 2018
  • The intention of this study was to identify the bacterial pathogens infecting Oreochromis niloticus (Nile tilapia) and Clarias gariepinus (African catfish), and to establish the antibiotic susceptibility of fish bacteria in Uganda. A total of 288 fish samples from 40 fish farms (ponds, cages, and tanks) and 8 wild water sites were aseptically collected and bacteria isolated from the head kidney, liver, brain and spleen. The isolates were identified by their morphological characteristics, conventional biochemical tests and Analytical Profile Index test kits. Antibiotic susceptibility of selected bacteria was determined by the Kirby-Bauer disc diffusion method. The following well-known fish pathogens were identified at a farm prevalence of; Aeromonas hydrophila (43.8%), Aeromonas sobria (20.8%), Edwardsiella tarda (8.3%), Flavobacterium spp. (4.2%) and Streptococcus spp. (6.3%). Other bacteria with varying significance as fish pathogens were also identified including Plesiomonas shigelloides (25.0%), Chryseobacterium indoligenes (12.5%), Pseudomonas fluorescens (10.4%), Pseudomonas aeruginosa (4.2%), Pseudomonas stutzeri (2.1%), Vibrio cholerae (10.4%), Proteus spp. (6.3%), Citrobacter spp. (4.2%), Klebsiella spp. (4.2%) Serratia marcescens (4.2%), Burkholderia cepacia (2.1%), Comamonas testosteroni (8.3%) and Ralstonia picketti (2.1%). Aeromonas spp., Edwardsiella tarda and Streptococcus spp. were commonly isolated from diseased fish. Aeromonas spp. (n = 82) and Plesiomonas shigelloides (n = 73) were evaluated for antibiotic susceptibility. All isolates tested were susceptible to at-least ten (10) of the fourteen antibiotics evaluated. High levels of resistance were however expressed by all isolates to penicillin, oxacillin and ampicillin. This observed resistance is most probably intrinsic to those bacteria, suggesting minimal levels of acquired antibiotic resistance in fish bacteria from the study area. To our knowledge, this is the first study to establish the occurrence of several bacteria species infecting fish; and to determine antibiotic susceptibility of fish bacteria in Uganda. The current study provides baseline information for future reference and fish disease management in the country.

Control and Investigation for Hazardous Characteristics of Metalworking Fluids Used in Korea - Control and Hazardous Characteristics of Soluble MWF (우리나라에서 사용하는 광물유(금속가공유)의 유해특성과 관리대책에 관한 연구 -수용성 금속가공유의 유해특성과 관리대책-)

  • Paik, Nam-won;Park, Dong-wook;Yoon, Chung-sik;Kim, Seung-won;Kim, Shin-bum;Kim, Kwi-suk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.8 no.1
    • /
    • pp.67-75
    • /
    • 1998
  • The objectives of this study were both to evaluate the level and correlations of hazardous agents and to suggest measures to control industrial hygiene problems caused by using water-soluble metalworking f1uids(MWF). Geometric mean of formaldehyde(0.039 ppm) was higher than criteria of NIOSH(0.016ppm). Formaldehyde, originally existed in the biocide, is released and used to kill microbes in soluble MWF. Microbe concentrations were above $10^4No./mL$ in 14 MWF tanks among 20 tanks surveyed. Nitrosamines that is formed by reaction of nitrosating group and amines was detected to $18.4-47.1{\mu}g/m^3$. Formaldehyde concentration was low when microbes were abundant(r=-0.67, p=0.011), and high when open tank area was wide(r=0.75. p=0.012). The significant relationship between pH and microbes(r=-0.76. p=0.003) was also observed. The predominant bacteria species in MWF were Pseudomonas spp., Bacillus spp., Comamonas testosteroni, Acinetobacter haemolyticus, Bordertella bronchiseptica in order. Therefore, hazardous agents emitted by using water-soluble MWF seems to be correlated microbial growth. In order to minimize worker's exposure to several hazardous agents by an water-soluble MWF and to increase productivity, microbial growth must be controlled to the lowest level as possible. Administrative control as well as engineering control must comprehensively be applied to control microbe's growth in water-soluble MWF.

  • PDF