• Title/Summary/Keyword: Pseudomonas sp. P2

Search Result 265, Processing Time 0.025 seconds

Construction and Characterization of Multiple Heavy Metal-Resistant Phenol-Degrading Pseudomonads Strains

  • Yoon, Kyung-Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.1001-1007
    • /
    • 2003
  • Metal ions contamination may inhibit microorganisms involved in the biodegradation of organic compounds and affect biodegradation rates. Therefore, it is likely that bioremediation of xenobiotics-contaminated soils and waste will require inoculation with efficient biodegrading microbial communities, with capabilities of being resistant to heavy metals as well. Two different transconjugants (Pseudomonas sp. KMl2TC and P. aeruginosa TC) were constructed by conjugation experiments. Results on MIC, induction and growth inhibition strongly indicated that arsenic-resistant plasmid, pKM20, could be mobilized, and the newly acquired phenotype of pKM20 was not only expressed but also well regulated, resulting in newly acquired resistances to $As^{5+},\;As^{3+},\;and\;Sb^{3+} in\;addition\;to\;Cd^{2+},\;Zn^{2+},\;and\;Hg^{2+}$. The phenol- degradation efficiencies of Pseudomonas sp. KMl2TC were maintained significantly even at high heavy metal concentrations at which these efficiencies of P. aeruginosa TC were completely impaired. The results in this study on the effects of heavy metals on phenol degradation, especially after conjugation, are the first ever reported. All the results described in this study encourage to establish a goal of making "designer biocatalysts" which could degrade certain xenobiotics in the area contaminated with multiple heavy metals.

Production of theobromine from caffeine by Pseudomonas sp. (Pseudomonas sp.에 의한 Caffeine으로부터 Theobromine의 생산)

  • Kim, Sung-Kyoon;Lee, Il-Seok;Bang, Won-Gi
    • Applied Biological Chemistry
    • /
    • v.41 no.7
    • /
    • pp.496-499
    • /
    • 1998
  • For the production of theobromine from caffeine, 5 strains of bacteria capable of producing theobromine were isolated from soil. Among them, the strain CT-017 showed the best ability of producing theobromine, and was partially identified as a Pseudomonas sp. For the production of theobromine, fructose was the most effective carbon source at an optimum concentration of 5 g/l. The most effective nitrogen source was 5 g/l of beef extracts. And 0.02 g/l of $Fe^{2+}$, 1.0 g/l of threonine were effective for the production of theobromine. The optimum temperature and initial pH were $28^{\circ}C$ and 6.5, respectively. After 23 hr cultivation, 7.98 g/l of theobromine was produced from 15 g/l of caffeine which corresponds to a conversion yield of 53.2%.

  • PDF

Purification and Properties of Alkaline Lipase from Pseudomonas sp. J-19 (Pseudomonas sp. J-19가 생산하는 Alkaline Lipase의 정제와 특성)

  • 신원철;정광성;유재흥;유주현
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.1
    • /
    • pp.57-63
    • /
    • 1991
  • A strain J-19 was isolated from soil, produced lipase which has resistant against alkali and linear alkylbenzene sulfonate. The strain was identified as Pseudornonns sp.. The enzyme was purified by ammonium sulfate precipitation, DEAE-Sephadex and Sephadex G- 100 column chromatography. The specific activity of the purified enzyme was 35 unit/mg protein and the yield of enzyme activity was 17%. The purified enzyme showed a single band on polyacrylamide disc gel electrophoresis. Mo1ecul;tr weight of the purified enzyme was estimated about 36,000 by Sephadex GI00 gel filtration and SDS-polyacrylarnide gel electrophoresis. The optimum pH and temperature were pH 10.0 and $30^{\circ}C$, respectively. Activity of the purified enzyme was increased 2-fold by the addition of 0.1% linear alkylbenzene sulfonate and 2.5- fold by the addition of 0.05% Tide. This enzyme remained stable from pH 8.0 to 10.0 and stable up to $40^{\circ}C$.

  • PDF

2, 4, 5-Trichlorophenoxyacetic Acid 분해균의 유전적 특성에 관한 연구

  • Yoon, So-Yeong;Son, Hong-Joo;Lee, Geon;Lee, Sang-Joon;Lee, Jong-Kun
    • Korean Journal of Microbiology
    • /
    • v.30 no.4
    • /
    • pp.260-264
    • /
    • 1992
  • Pseudotnorju.c sp. EL-071P degrading 2.4.5-trichlorophe~~oxyi~cetaicci d (2.3.5-T) was resistantto antibiotics: rifampicin. ampicillin. kanamycin and metal ions : Zn" and Cu".The plasmitl related to the degradation of 2.4.5-'r and rifa~npicin resistance was isolatecifrom the strain. Its size was about 40 Kb. As result of transforming the plasmid intoEsch~rirhiti coli MClOhl, it was confirmed that the plasmid ura.; related to 2.4.5-T degradation.The strain coulil grow in the various chlorinated aromatic analogs as the solc carbon source.In the case of chlorophcnols. the chlorinated mono-substituteti phenols were easily dcgradetlin the order ol' ortho-. ~ ~ a r um- ,c ~tu-position.T he 2.3.5-T mctaholism was inhibited by 4-chlorophenol of 2.4.5-7' analog. In non-chlorinateci aromatics. ~ C I I L O ~ I ~ Csa.l icylilte i~ndtoluene were uscd ax the carbon source by the strain and typestrain Acudonlotrtr.\ plrtirltrKCTC 1643 having clegrad;~bility of various aromatics. But naphtalene was usecl only bythe A~urlomonri.\ sp. EL-07 1 P.the A~urlomonri.\ sp. EL-07 1 P.

  • PDF

Organic Solvent Stable Lipase from Pseudomonas sp. BCNU 171 (Pseudomonas sp. BCNU 171이 생산하는 유기용매 내성 리파아제)

  • Choi, Hye Jung;Kwon, Gi-Seok;Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.345-348
    • /
    • 2015
  • An organic solvent stable lipase from solvent-tolerant Pseudomonas sp. BCNU 171 had an optimal pH of 8 and an optimal temperature of 37℃. This crude extracellular lipase from BCNU 171 exhibited increased stability in the presence of various types of solvents at high concentrations (25%, v/v). The lipase stability was found to be highest in the presence of xylene (137%), followed by toluene (131%), octane (130%), and butanol (104%). Overall, BCNU 171 lipase tended to be more stable than immobilized commercial lipase (Novozyme435) in the presence of organic solvents. Furthermore, BCNU 171 lipase maintained about 90% of its enzyme original activity in the presence of NH4+, Na+, Ba2+, Hg2+, Ni2+, Cu2+, and Ca2+ion and significantly increased its enzyme activity in the presence of various emulsifying agents. Thus, the organic solvent stable lipase from Pseudomonas sp. BCNU 171 could be usable as a potential whole cell biocatalyst and for synthetic applications of enzymes for industrial chemical processes in organic solvents without using immobilization.

Characterization of Cellulolytic Activity from Pseudomonas sp. JH1014 (Pseudomonas sp. JH1014의 섬유소분해 활성 특성)

  • Heo, Hee-Yeon;Jeong, Yu-Jin;Shin, Eun-Sun;Kwon, Eun-Ju;Kim, Yu-Jeong;Kim, Jung-Ho;Kim, Hoon
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.322-325
    • /
    • 2005
  • Pseudomonas sp. JH1014 was isolated from stream water as a detergent-compatible alkaline protease producing microorganism. The strain produced no detectable cellulolytic activity in LB medium. The addition of carboxymethyl cellulose induced the production of carboxymethyl cellulase (CMCase) without causing any significant change in the growth pattern of the strain. The strain reached its maximum growth after 9 to 12 h at $37^{\circ}C$, and the production of CMCase in the presence of the substrate reached its maximum after 21 h of growth at $37^{\circ}C$. The optimum pH of the crude enzyme preparation was pH 6.0. The enzyme had an optimal temperature at $55^{\circ}C$, and retained 70% of its original activity when preincubated at $70^{\circ}C$ for 10 min. Activity staining of the crude enzyme preparation separated on an SDS-PAGE gel showed two active bands with molecular masses of 54 and 30 kDa, indicating that Pseudomonas sp. JH1014 produced at least 2 kinds of CMCase.

Production of Ascorbic acid-2-phosphate from Ascorbic acid by Pseudomonas sp.. (Pseudomonas sp.에 의한 Ascorbic acid로부터 Ascorbic acid-2-phosphate의 생산)

  • 권기성;이상협;방원기
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.1
    • /
    • pp.33-38
    • /
    • 2000
  • In order to produce ascorbic acid-2-phosphate from ascorbic acid, bacteria capable of transforming ascorbic acid to ascorbic acid-2-phosphate were isolated from soils and the stock cultures in our laboratory. Among them, a newly isolated bacterium LSH-3 having the best ability of producing ascorbic acid-2-phosphate was selected and partially identified as Pseudomonas sp. The optimum conditions for the production of ascorbic acid-2-phosphate from ascorbic acid and using its resting cells as the source os enzyme were investigated. The results were summarized as follows: The optimum cultivation time and the cell weight for the production of ascorbic acid-2-phosphate was 14 hours and 100g/I(wet weight), respectively. And 0.1%(v/v) Trition X-100 was the most effective surfactant. The optimum concentrations of ascorbic acid and pyrophosphate were 400mM and 500mM, respectively, which led to produce 14.54g/I of ascorbic acid-2-phosphate. The most effective buffer was 50mM sodium acetate. The optimum pH and temperature were 4.5 and $40^{\circ}C$, respectively. Under the above conditions, 17.71 g/I of ascorbic acid-2-phosphate was produced from ascorbic acid after 32 hour-incubation, which corresponded to 17.5% of conversion rate based on ascorbic acid.

  • PDF

Structure and Function of the phnF Gene of Pseudomonas sp. Strain DJ77 (Pseudomonas sp. Strain DJ77에서 phnF 유전자의 구조)

  • 이성훈;김성재;신명수;김치경;임재윤;이기성;민경희;김영창
    • Korean Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.92-96
    • /
    • 1997
  • The 6.8 kb Xhol fragment of chromosomal ONA of Pseudomonas sp. 0177 contains the phnDEFG genes involved in the degradation of polyaromatic hydrocarbons and chlorinated aromatics. Here, we report the nucleotide sequence of the ORF encoding a polypeptide consisted of 143 amino acids with a Mr of 13,859. The nucleotide sequence of the ORF is 99% and 68.6% identical to the downstream region of catE of Sphingomonas sp. strain HV3 and the ORF between xylE and xylG of Sphingomonas yanoikuyae Bl, respectively. The deduced amino acid sequence of the PhnF has 62.3% identity with the amino acid encoded hy orfY region of Citrobacter freundii DSM30040. We now confirm that the ORF is located between the catechol 2,3-dioxygenase (C230), phnE, and 2-hydroxymuconic semialdehyde dehydrogenase (2HMSO), phnG.

  • PDF

Purification and Enzymatic Properties of Alkaline Lipase from the Pseudomonas sp.S4-14 (Pseudomonas sp. S4-14가 생산하는 Alkaline Lipase의 정제 및 효소학적 성질)

  • Park, Sang-Ho;Choi, Soo-Chul;Rhee, Joon-Shick;Sung, Nack-Kie
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.3
    • /
    • pp.271-276
    • /
    • 1994
  • The strain S4-14 which produced alkaline lipase and had resistance against linear alkylbenzene sulfonate was isolated from soil or water samples. The isolated strain S4-14 was identified a species belong to Pseudomonas. Alkalin lipase secreted by Pseudomonas sp. S4-14 was purified by ammonium sulfate precipitation procedure follwed by DEAE-Cellulose, DEAE-Sepharose and gel filtration chromatohraphies with 995.15 U/mg protein and 16.1% yield. The molecular weight of the enzyme was estimated to be 65,000 dalton by SDS-PAGE. The optimum pH and temperature of the purified enzyme was 10.5 and 45$\circ $C, respectively. The emzyme was stable at 45$\circ $C for 1 hr and in a pH range from 8.0 to 12.0 for 24 hr at 4$\circ $C. The activity of lipase was enhanced by Ca$^{2+}$ while inhibited strongly by Pb$^{2+}$, Zn$^{2+}$ or Fe$^{3+}$. The activity of lipase was inactivated about 50~60% in the presence of 50 mg/l linear alkylbenzene sulfonate, $\alpha $-olefin sulfonate, alcohol ethoxylate or perborate.

  • PDF

Production of Poly(3-hydroxybutyrate) Using Waste Frying Oil (Waste frying oil를 사용한 Poly(3-Hydroxybutyrate) 생합성)

  • Kim, Tae-Gyeong;Lee, Woosung;Gang, Seongho;Kim, Jong-Sik;Chung, Chung-Wook
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.76-83
    • /
    • 2019
  • In this study, the optimal growth and poly(3-hydroxybutyrate) (PHB) biosynthesis of Pseudomonas sp. EML2 were established using waste frying oil (WFO) as a cheap carbon source. The fatty acid composition of WFO and fresh frying oil (FFO) were analyzed by gas chromatography. The unsaturated and saturated fatty acid contents of the FFO were 82.6% and 14.9%, respectively. These contents changed in the WFO. The compositional change in the unsaturated fatty acid content in the WFO was due to a change in its chemical and physical properties resulting from heating, an oxidation reaction, and hydrolysis. The maximum dry cell weight (DCW) and PHB yield (g/l) of the isolated strain Pseudomonas sp. EML2 were confirmed under the following culture conditions: 30 g/l of WFO, 0.5 gl of $NH_4Cl$, pH 7, and $20^{\circ}C$. Based on this, the growth and PHB yield of Pseudomonas sp. EML2 were confirmed by 3 l jar fermentation. After the cells were cultured in 30 g/l of WFO for 96 h, the DCW, PHB content, and PHB yield of Pseudomonas sp. EML2 were 3.6 g/l, 73 wt%, and 2.6 g/l, respectively. Similar results were obtained using 30 g/l of FFO as a carbon source control. Using the FFO, the DCW, PHB content, and PHB yield were 3.4 g/l, 70 wt%, and 2.4 g/l, respectively. Pseudomonas sp. EML2 and WFO may be a new candidate and substrate, respectively, for industrial production of PHB.