• Title/Summary/Keyword: Pseudomonas sp. P2

Search Result 265, Processing Time 0.029 seconds

Structural Analysis of the fcbABC Gene Cluster Responsible for Hydrolytic Dechlorination of 4-Chlorobenzoate from pJS1 Plasmid of Comamonas sp. P08

  • Lee, Jeong-Soon;Lee, Kyoung;Ka, Jong-Ok;Jong-Chan;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.89-94
    • /
    • 2003
  • Bacterial strain No. P08 isolated from wastewater at the Cheongju industrial complex was found to be capable of degrading 4-chlorobenzoate under aerobic condition. P08 was identified as Comamonas sp. from its cellular fatty acid composition and 16S rDNA sequence. The fcb genes, responsible for the hydrolytic dechlorination of 4-chlorobenzoate, were cloned from the plasmid pJJl of Comamonas sp. P08. The fcb gene cluster of comamonas sp. PO8 was organized in the order fcbB-fcbA-fcbTl-fcbT2-fcbT3-fcbC. This organization of the fcb genes was very similar to that of the fcb genes carried on the chromosomal DNA of pseudomonas sp. DJ-12. However, it differed from the fcbA-fcbB -fcbC ordering of Arthrobacter sp. SU. The nucleotide sequences of the fcbABC genes of strain P08 showed 98% and 53% identities to those of Pseudomonas sp. DJ-12 and Arthrobacter sp. SU, respectively. This suggests that the fcb genes might have been derived from Pseudomonas sp. DJ-12 to form plasmid pJSl in Comamonas sp. P08, or that the fcb genes in strain DJ-12 were transposed from Comamonas sp. P08 plasmid.

Isolation of Phytase-Producing Pseudomonas sp. and Optimization of its Phytase Production

  • Kim, Young-Hoon;Gwon, Moon-Nam;Yang, Si-Yong;Park, Tae-Kyu;Kim, Chan-Gil;Kim, Chang-Won;Song, Min-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.279-285
    • /
    • 2002
  • Phytase (myo-inositol hexakisphosphate phospho-hydrolase, EC 3.1.3.8) catalyzes the hydrolysis of phytate (myo-inositol hexakisphosphate) to release inorganic phosphate. A bacterial strain producing phytase was isolated from soil around a cattle shed. To identify the strain, cellular fatty acids profiles, the GC contents, a quinine-type analysis, and physiological test using an API 20NE kit were carried out. The strain was identified to be a genus of Pseudomonas sp. and named as Pseudomonas sp. YH40. The optimum culture condition for the maximum productivity of phytase by Pseudomonas sp. YH40 were attained in a culture medium composed of $1.0\%$ (w/v) glycerol, $2.0\%$ (w/v) peptone, and $0.2\%$ (w/v) $FeSO_4{\cdot}7H_2O$. Within the optimal medium condition, the production of phytase became highest after 10 h of incubation, and the maximal phytase production by Pseudomonas sp. YH40 was observed at $37^{\circ}C$ and pH 6.0.

High-Level Expression of Pseudomonas sp. LBC505 Endoglucanase Gene in Escherichia coli

  • Chun, Sung-Sik;Kim, Yang-Woo;Chung, Young-Chul;Kim, Kyeong-Sook;Sung, Nack-Kie
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.14-17
    • /
    • 1995
  • Endoglucanase gene of Pseudomonas sp. LBC505 was previously cloned in pUC19 to yield plasmid pLCl. The Pseudomonas sp. LBC505 endoglucanase gene was subcloned in a temperature-regulated Es-cherichia coli expression vector, pAS1, containing the leftward promoter $P_L$ of bacteriophage lambda. The level of gene expression was controlled by the thermal inactivation of the heat-sensitive lambda cI857 repressor. Best yield of endoglucanase was obtained by lowering the incubation temperature to $37^{\circ}C$ after induction at $42^{\circ}C$ for 1h. Under these conditions enzyme production continued for about 5h at a gradually decreasing rate. Ecoli harboring recombinant plasmid pASC10 expressed 4.3 times as much CMCase activity as E.coli containing pLCl. To enhance the expression level of endogl, ucanase gene, we have also changed the presumptive Shine-Dalgamo sequence (AGAGGT) of the gene to consensus sequence (AGGAGGT) by site-directed mutagenesis. The genes mutated were subcloned in pASl resulting in the formation of recombinant plasmid pASS50. E.coli harboring the plasmid pASS50 expressed 6.2-fold higher levels of CMCase activity than that of E.coli harboring pLC1.

  • PDF

Cloning of Catechol 2,3-dioxygenase Gene from Pseudomonas putida (Pseudomonas putida의 Catechol 2,3-dioxygenase 유전자의 클로닝)

  • 김영수;최봉수;민경락;김치경
    • Korean Journal of Microbiology
    • /
    • v.29 no.3
    • /
    • pp.155-159
    • /
    • 1991
  • Four strains of Pseudomonas putida (NAH), Pseudomonas sp.(TOL), Achromobacter xylosoxidans, and Alcaligenes sp. were compared with their degradative capability of aromatic compounds. All of the bacterial strains were utilized catechol as a sole carbon source for growth, but signigicantly different in degradative properties for 5 other aromatic compounds. Catechol 2, 3-dioxygenase gene from P. putida (NAH) has been cloned and expressed in E. coli. The DNA clone designated pCNU101 contains NAH-derived 6 Kb insert and its physical map was characterized. A subclone (pCNU106) for the catechol dioxygenase gene in pCNU101 contained 2.0kb-DNA insery fragmented by HpaI and ClaI.

  • PDF

Isolation and Characterization of Pseudomonas sp. DCB3 Degrading 1.2-Dichlorobenzene (1.2-Dichlorobenzene을 분해하는 Pseudomonas sp. DCB3의 분리 및 특성)

  • 서승교;우철주;이창호
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.4
    • /
    • pp.33-38
    • /
    • 1997
  • Four bacterial strains able to degrade dichlorobenzene as the sole source of carbon and energy were isolated from soil by selective enrichment culture, and among them, one isolation was the best in the cell growth and identified as Pseudomonas sp. DCB3 by its morphology and physiological properties. Cell growth dramatically increased in a minimal medium containing 500ppm of dichlorobenzene was not detected any more at 72 hours after cultivation. The optimal temperature and initial pH for the growth of the isolated strain were 30$\circ$C and 7.0, respectively. Cell growth was increased by supplementing $(NH_2)_2CO$ and 50 ppm yeast extract as additional nutrients. Therefore, it was suggested that Pseudomonas sp. DCB3 could be effectively used for the biological treatment of wastewater containing dichlorobenzene.

  • PDF

Isolation and Characterization of Pseudomonas sp. KM10, a Cadmium- and Mercury-resistant, and Phenol-degrading Bacterium

  • Yoon, Kyung-Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.388-398
    • /
    • 1998
  • A bacterium which is resistant to both mercury and cadmium, and also capable of utilizing phenol as a carbon and energy source, was isolated from the Kumho River sediments near Kangchang Bridge, Taegu, Korea. The isolate was labeled Pseudomonas sp. KM10 and characterized. The bacteria grew in 4 mM $CdCl_2$and in $70{\mu}M$ $HgCl_2$. The bacteria efficiently removed over 90% of 1 g/l phenol within 30 h. In the presence of 1.250 g/l phenol, the growth of the microorganism was slightly retarded and the microorganism could not tolerate 1.5 g/l phenol. Curing of plasmid from the bacteria was carried out to generate a plasmidless strain. Subsequent experiments localized the genes for phenol degradation in plasmid and the genes for mercury resistance and cadmium resistance on the chromosome. Dot hybridization and Southern hybridization under low stringent conditions were performed to identify the DNA homology. These results showed significant homologies between the some sequence of the chromosome of Pseudomonas sp. KM10 and merR of Shigella flexneri R 100, and between the some sequence of the chromosome of Pseudomonas sp. KM10 and cadA of Staphylococcus aureus pI258. The mechanism of cadmium resistance was efflux, similar to that of S. aureus pI258 cadA, and the mechanism of mercury resistance was volatilization, similar to that of S. flexneri R100 mer.

  • PDF

Genome Analysis of Naphthalene-Degrading Pseudomonas sp. AS1 Harboring the Megaplasmid pAS1

  • Kim, Jisun;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.330-337
    • /
    • 2018
  • Polycyclic aromatic hydrocarbons (PAHs), including naphthalene, are widely distributed in nature. Naphthalene has been regarded as a model PAH compound for investigating the mechanisms of bacterial PAH biodegradation. Pseudomonas sp. AS1 isolated from an arseniccontaminated site is capable of growing on various aromatic compounds such as naphthalene, salicylate, and catechol, but not on gentisate. The genome of strain AS1 consists of a 6,126,864 bp circular chromosome and the 81,841 bp circular plasmid pAS1. Pseudomonas sp. AS1 has multiple dioxygenases and related enzymes involved in the degradation of aromatic compounds, which might contribute to the metabolic versatility of this isolate. The pAS1 plasmid exhibits extremely high similarity in size and sequences to the well-known naphthalene-degrading plasmid pDTG1 in Pseudomonas putida strain NCIB 9816-4. Two gene clusters involved in the naphthalene degradation pathway were identified on pAS1. The expression of several nah genes on the plasmid was upregulated by more than 2-fold when naphthalene was used as a sole carbon source. Strains have been isolated at different times and places with different characteristics, but similar genes involved in the degradation of aromatic compounds have been identified on their plasmids, which suggests that the transmissibility of the plasmids might play an important role in the adaptation of the microorganisms to mineralize the compounds.

A Biological Study on the Methanol-Utilizing Bacteria (Methanol 자화세균에 관한 생물학적 연구)

  • 이영녹;배광성;박정호
    • Korean Journal of Microbiology
    • /
    • v.16 no.4
    • /
    • pp.170-179
    • /
    • 1978
  • By the successive enrichment culture, more than 250 methanol-utilizing bacteria were isolated from various samples such as soil, waste water and sewage. Two strains of which were selected and tentatively identified as Acinetobacter sp. and Pseudomonas sp. experiments were carried out to determine the growth conditions for the higher biomass yield and to demonstrate the difference to protein composition dependent upon carbon sources of these two species. the results were as follows ; 1. the optimum pH was determined as 8 in the both species. The optimum temperature in Acinetobacter sp. was $25^{\circ}C{\sim}30^{\circ}C$ and pseudomonas sp. was $30^{\circ}C-35^{\circ}C$. The optimum initial concentration of mthanol was determined as 1-2% in Acinetobacter sp. and 2-3% in pseudomonas sp. 2. The optimum concnetrations of nitrogen source, micro-elements, and vitamins such as biotin and thiamine-HCl in Acnetobactar sp. were 1g $(NH_4)_3SO4,\;1{\sim}3mg\;Mn^{++},\;4mg\;Fe^{++},\;10{\mu}g\;biotin,\;and\;100{\mu}g$ thiamine-HCl per liter medium. In the Pseudomonas sp., 2g $(NH_4)_3SO4,\;1mg\;Mn^{++},\;trace\;amounts\;of\;Fe^{++},\;5{\mu}g\;biotin,\;and\;100{\mu}g$ thiamine HCl per liter were effective. Maximum biomass yield was 2.5g/l in Acinetobacter sp. and 4.8g/l in Pseudomonas sp. 3. Protein composition of the two strains exhibited that alkai-labile protein was higher than alkali-stable protein. In Pseudomonas sp., the contents of acid soluble fraction and alkali-stable protein of the cells grown in the methanol medium were higher than in sucrose medium. On the other hand, in Acinetobacter sp., alkalilabile protein of the cells grown in sucrose medium was higher than in methanol medium.

  • PDF

An Antibiotic from Actinomycetes Becoming Effective for Cephalosporin Resistant Pathogenic Pesudomonas sp. (방선균이 생산하는 Cephalosporin 내성 병원성 Pseudomonas에 유효한 항생물질)

  • 하병조
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.3
    • /
    • pp.271-278
    • /
    • 1999
  • We isolated activnmycetes LAM-98-80 as strain producing an effective antibiotic for cephalosporin re-sistant pathogenic PSeudomonas sp. and identified as Streptomyces sp. LAM-98-80 from cultural and phyisological characteristics. We investigated the optimal culture conditions for producation of an anti-biotic becoming effective for cephalsporin-resistant pathogenic Pseudomonas sp. It was found that 1.5% soluble starch and 1.0% yeast extract were good as carbon and nitrogen source respectively. The pro-duction of antibiotic was also activated by 0.04% Mn2+ as 80% degree. The optimum initial pH on pro-ductio of antibiotic was pH 7.0. The culture condition for the maximal productivity of the antibiotic was at 3$0^{\circ}C$ for 5 days. The cephalosporin-resistant pathogenic Pseudomonas sp. as test bacteria was rev-ealed to resist antibiotic of cepha families but revealed to not resist those of $\beta$-lactam families ampicil-lin and amoxicillin. Parital purified antibiotic was stable for the pH from 3 to 9 and was also stable when treated at 70 $^{\circ}C$ for 1 hour, This antbiotic was effective against all gram positive and negative bac-teria but was not effective against molds and yeasts.

  • PDF

Enzymatic Properties of the 2,3-Dihydroxybiphenyl Dioxygenase Purified from Pseudomonas sp. DJ-12 (Pseudomonas sp. DJ-12에서 분리한 2,3-Dihydroxybiphenyl Dioxygenase의 효소학적 특성)

  • 성태경;남정현;김치경
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.2
    • /
    • pp.150-156
    • /
    • 1993
  • The 2,3-dihydroxybiphenyl(2,3-DHBP) dioxygenase, the product of pcbC gene, was purified from the biphenyl and 4-chlorobiphenyl degrading Pseudomonas sp. DJ-12 by the methods of acetone precipitation, DEAE-Sephadex A-50 ion exchange chromatography, and Sephadex G-150 gel filtration chromatography. The enzyme was estimated to be about 260 kilodaltons in molecular weight and to be consisted of eight subunits. The Km value of the enzyme was 61 nM to 2,3-DHBP and the highest activity of the enzyme was observed at pH 8 and 30C.

  • PDF