• Title/Summary/Keyword: Pseudomonas diminuta

Search Result 12, Processing Time 0.016 seconds

Expression and Characterization of Escherichia coli Prolidase with Organophosphorus Compounds

  • Hong, Jin-Kyu;Park, Min-Sun;Frank M. Raushel;Khang, Yong-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.126-129
    • /
    • 2003
  • A relatively high homology between Escherichia coli prolidase and Alteromonas organophosphorous acid anhydrolase suggests that E. coli prolidase may have an activity to d egrade toxic organophosphorous compounds. To confirm this suggestion, we cloned and expressed a prolidase gene (pepQ) of E. coliBL2l. The recombinant E. coli prolidase that consisted of 443 amino acid residues exhibited activity and stereochemical selectivity against organopho sphorous compounds, although its activity was two to three orders of magnitude less than that of the other organophosphorous acid hydrolase isolated from Pseudomonas diminuta.

Comparison of the Organophosphorus Hydrolase Surface Display Using InaVN and Lpp-OmpA Systems in Escherichia coli

  • Karami, Ali;Latifi, Ali Mohamad;Khodi, Samaneh
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.3
    • /
    • pp.379-385
    • /
    • 2014
  • The purpose of this study was to compare the ability of an engineered Escherichia coli to degrade chlorpyrifos (Cp) using an organophosphorus hydrolase enzyme, encoded in both Flavobacterium sp. ATCC 27551 or Pseudomonas diminuta, by employing the Lpp-OmpA chimera and the N-terminal domain of the ice nucleation protein as anchoring motifs. Tracing of the expression location of the recombinant protein using SDS-PAGE showed the presentation of OPH by both anchors on the outer membrane. This is the first report on the presentation of OPH on the cell surface by Lpp-OmpA under the control of the T7 promoter. The results showed cell growth in the presence of Cp as the sole source of energy, without growth inhibition, and with higher whole-cell activity for both cells harboring plasmids pENVO and pELMO, at approximately 10,342.85 and 10,857.14 U/mg, respectively. Noticeably, the protein displayed by pELMO was lower than the protein displayed by pENVO. It can be concluded that Lpp-OmpA can display less protein, but more functional OPH protein. These results highlight the high potential, of both engineered bacteria, for use in the bioremediation of pesticide-contaminated sources in the environment.