• Title/Summary/Keyword: Pseudomonas carboxydovorans

Search Result 4, Processing Time 0.018 seconds

Purification and Characterization of an Intracellular Protease form Pseudomonas carboxydovorans DSM 1227 Grown on Carbon Monoxide

  • Ho, Bae-Ki;Kim, Young-Min
    • Korean Journal of Microbiology
    • /
    • v.30 no.4
    • /
    • pp.299-304
    • /
    • 1992
  • An intracellular protease form cells of Pseudomonas carboxydovorans DSM 1227 grown on carbon monoxide was purified 57-fold in six steps to homogeneity with a yield of 4.3% using azocoll as a substrate. The molecular weight of the enzyme was determined to be 150,000. Sodium dodecyl sulfate-gel electrophoresis revealed the purified enzyme to be a dimer with two identical subunits of molecular weight 72,000. The enzyme was stimulated by $Mg^{2+}$ but was inhibited completely by $Cd^{2+}$ $Fe^{2+}$ $Hg^{2+}$, and $^Zn{2+}$ The enzyme activity was also inhibited by EDTA, EGTA, phenylmethylsulfonyl fluoride, and phenyl glyoxal, but was increased by 1-ethyl-3(dimethyl aminopropyl fluoride, and phenyl glyoxal, but was increased by 1-ethyl-3(dimethyl aminopropyl)carbodiimide, iodoacetamide and dithiothereitol. The optimal pH and temperature for the enzyme reaction were found to be 7-8 and 50.deg.C, respectively. Casein and bovine serum albumin were hydrolyzed by the enzyme, but carbon monoxide dehydrogenase was not.

  • PDF

Purification and Some Properties of an Intracellular Protease from Pseudomonas Carboxydovorans (Pseudomonas carboxydovorans의 세포내 단백질 가수분해 효소의 정제 및 특징)

  • 이준행;김영민
    • Korean Journal of Microbiology
    • /
    • v.27 no.3
    • /
    • pp.237-244
    • /
    • 1989
  • A soluble intracellular protease from cells of Pseudomonas carboxydovorans, a carboxydobacterium, grown on nutrient broth was purified 68-fold in five steps to better than 95% homogeneity with a yield of 2.4% using azocasein as a substrate. The enzyme activity was not detected from cells grown on pyruvate, succinate, acetate, or CO as a sole source of carbon and energy. The molecular weight of the native enzyme was determined to be 53,000. Sodium dodecyl sulfate-gel electrophoresis revealed the purified enzyme a monomer. The enzyme was found to be a serine-type protease. The enzyme activity was inhibited completely by several divalent cations such as $Cd^{2+}, Cu^{2+}, Hg^{2+}$, and $Fe^{2+}$. The enzyme was also inhibited by EGTA, but was stimulated by iodoacetamide. The optimal pH and temperature for the enzyme reaction were found to be 8.0 and $50^{\circ}C$, respectively. The enzyme was inactive on CO dehydrogenase.

  • PDF

Enzymological Localization of Carbon Monoxide Dehydrogenases in Pseudomonas carboxydovorans and Acinetobacter sp.1 (Pseudomonas carboxydovorans와 Acinetobacter sp.1의 일산화탄소 산화효소의 세포내 분포에 대한 효소학적 연구)

  • 김시욱;김영민
    • Korean Journal of Microbiology
    • /
    • v.24 no.3
    • /
    • pp.270-275
    • /
    • 1986
  • The localization of carbon monoxide dehydrogenases (CO-DHs) in Pseudomonas carvoxydovorans and Acinetobacter sp.1 was examined by comparison of the distribution of CO-oxidizing activity between soluble and particulate fractions obtained after disruption of CO-grown cells by sonic oscillation and of spheroplasts by osmotic shock. When the cells were broken by sonic oscillation, most of the CO-DH activity was recovered from soluble fractions. However, disryption by osmotic lysis of spheroplasts revealed that the enzyme activity is present in the cell membrane. The results indicated the CO-DHs in these cells are loosely attached to the cytoplasmic membrane.

  • PDF

Purification and Characterization of Two Extracellular Proteases from Oligotropha carboxydovorans DSM 1227

  • Kang, Beom-Sik;Jeon, Sang-Jun;Kim, Young-Min
    • Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.14-20
    • /
    • 1999
  • Two extracellular proteases, EP I and EP II, from cells of Oligotropha carboxydovorans (formerly Pseudomonas carboxydovorans) DSM 1227 grown in nutrient broth were purified to greater than 95% homogeneity in five steps using azocasein as a substrate. The final specific activities of EPs I and II were 214.9 and 667.4 units per mg of protein. The molecular weights of native EPs I and II were determined to be 23,000. Sodium dodecyl sulfate-gel electrophoresis revealed the two enzymes to be monomers. The enzymes were found to be serine-type proteases. The activity of EP I was stimulated by Ca2+, Mg2+, and Ba2+, but that of EP II was not. The enzymes were completely inhibited by Fe2+, Hg2+, Co2+, Zn2+, and Cd2+. EDTA and EGTA exhibited a strong inhibitory effect on EP I. The optimal pH for the two enzymes was pH 9.0. The optimal temperatures for EP I and II were 60 and 50$^{\circ}C$, respectively. The enzymes were stable under alkaline conditions. The thermal stability of EP I was higher than that of EP II. Cell-free extracts did not inhibit the purified enzymes. The enzymes were active on casein, azocasein, azocoll, and carbon monoxide dehydrogenase, but weakly active with bovine serum albumin.

  • PDF