• 제목/요약/키워드: Pseudolite Navigation System

검색결과 30건 처리시간 0.021초

의사위성 활용방안 연구 (Practical Applications Study of the Pseudolite)

  • 장재원;권태희;이상정
    • 한국항행학회논문지
    • /
    • 제8권2호
    • /
    • pp.129-135
    • /
    • 2004
  • 본 논문에서는 의사위성의 기본개념과 더불어 응용방안에 대해 설명하였다. GPS의 성능 향상을 위한 많은 방법들이 현재 연구 중에 있다. 이러한 방법들은 대개 GPS 수신기외에 비컨(Becon) 수신기와 같은 별도의 장비를 요구한다. 의사위성의 경우 별도의 장비 없이 기존의 프로그램의 수정만으로도 GPS 성능을 향상시킬 수 있다. 본 논문에서는 의사위성만을 이용한 항법시스템과 보다 정밀한 항법 시스템을 위한 GPS와 의사위성의 통합 시스템에 대해서 소개하였다. 또한 의사위성의 장점에 대해 시뮬레이션을 통해 검증하였다.

  • PDF

의사위성 항법시스템의 항법성능 분석기법 연구 (A Study on Navigation Performance Analysis Technique of Pseudolite Navigation Systems)

  • 박준표;석진영
    • 한국항공우주학회지
    • /
    • 제42권11호
    • /
    • pp.947-957
    • /
    • 2014
  • 본 논문은 의사위성 항법시스템의 항법성능 분석기법을 제시하고, 실제 시험 데이터를 이용한 의사위성 항법시스템의 항법결과 성능분석을 통해 이를 검증하고자 하였다. 기존 GPS 및 Galileo 등의 위성항법 분야에서 적용되는 항법성능 분석방법들을 통해 오차 요소들을 식별하고, 표준화된 문서에서 정의한 UERE의 기준을 확인하고, 실험적으로 UERE를 계산하는 방안을 살펴보았다. 이를 기준으로 의사위성 항법시스템에서의 오차 요소를 식별하고, 가용한 UERE 관측 방법과 UERE 계산 방법 및 UERE와 위성 배치로부터의 항법해 성능 추정 방안을 제안하고 몇 가지 상황을 고려한 시뮬레이션을 수행하였으며, 최종적으로 비행시험을 통한 실제 데이터를 이용하여 이를 검증하였다.

GPS/의사위성의 통합 항법에 대한 응용 연구 (A Study on the Applications of GPS/Pseudolite Navigation System)

  • 이택진;김강호;소형민;기창돈;노광현;이기덕
    • 제어로봇시스템학회논문지
    • /
    • 제12권8호
    • /
    • pp.729-738
    • /
    • 2006
  • In recent days, navigation technology becomes more important as location based service (LBS) such as E911 and telematics are considered as attractive business fields. Commercial LBS requires that navigation system should be inexpensive and available anytime and anywhere - indoors and outdoors. If we consider these requirements, it is out of question that GPS is the most favorite system in the world. However, GPS has a serious problem. The one is that GPS does not operate indoors well. This is because GPS satellites are about 20,000km above the ground so that indoor signals are too weak to be tracked in GPS receiver. And the other is that vertical accuracy is less than horizontal accuracy, because of GPS satellites' geometry. To solve these problems, many researches have been done around the world since 1990s. This paper is also one of them and we will introduce an excellent solution by use of pseudolite. Pseudolite is a kind of signal generator, which transmits GPS-like signal. So it is same as GPS satellite in ground. In this paper, we will propose the integrated navigation system of GPS and pseudolite and show the flight test results using RC airplane to proof our navigation system. As a result, we could improve the vertical accuracy of airplane into the horizontal accuracy.

의사위성 시각동기 모니터링 시스템 설계 (Design of Monitoring System for Pseudolite Clock Synchronization)

  • 황소영;유동희;이주현;이상정
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.163-164
    • /
    • 2014
  • 의사위성은 GPS 위성의 백업 시스템으로 활용하거나 실내항법을 위한 목적으로 운용되며, 지상에 설치되어 GPS 위성과 유사한 신호를 송신한다. 의사위성의 의사거리 측정치 활용을 위해서는 항법 시스템과 의사위성간의 시각동기가 필수적이다. 본 논문에서는 GPS 위성과 의사위성간 시각동기를 위한 모니터링 시스템의 설계를 제안한다. 모니터링 시스템을 통해 의사위성의 시각동기 정확도를 분석하고 시각오차 보정에 활용하도록 한다.

  • PDF

Software-based Performance Analysis of a Pseudolite Time Synchronization Method Depending on the Clock Source

  • Lee, Ju Hyun;Hwang, Soyoung;Yu, Dong-Hui;Park, Chansik;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제3권4호
    • /
    • pp.163-170
    • /
    • 2014
  • A pseudolite is used as a GPS backup system, and is also used for the purpose of indoor navigation and correction information transmission. It is installed on the ground, and transmits signals that are similar to those of a GPS satellite. In addition, in recent years, studies on the improvement of positioning accuracy using the pseudorange measurement of a pseudolite have been performed. As for the effect of the time synchronization error between a pseudolite and a GPS satellite, a time synchronization error of 1 us generally induces a pseudorange error of 300 m; and to achieve meter-level positioning, ns-level time synchronization between a pseudolite and a GPS satellite is required. Therefore, for the operation of a pseudolite, a time synchronization algorithm between a GPS satellite and a pseudolite is essential. In this study, for the time synchronization of a pseudolite, "a pseudolite time synchronization method using the time source of UTC (KRIS)" and "a time synchronization method using a GPS timing receiver" were introduced; and the time synchronization performance depending on the pseudolite time source and reference time source was evaluated by designing a software-based pseudolite time synchronization performance evaluation simulation platform.

Performance Analysis of Pseudolite Tropospheric Delay Models Using Radiosonde Meteorological Data

  • So, Hyoungmin;Park, Junpyo;Song, Kiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제2권1호
    • /
    • pp.49-57
    • /
    • 2013
  • When pseudolite navigation system is applied to wide area, the tropospheric delay is the main error factor. In this study, we experimentally compared and analyzed the performance of the conventional pseudolite tropospheric delay models. The integration method using radiosonde meteorological data was suggested to derive the reference value for the comparison and analysis. Flight tests were carried out to analyze the performance of the tropospheric delay models according to the elevation angle and distance conditions between the user receiver and the pseudolite. As the results of this study, we provided the basis for the choice of tropospheric delay model appropriate to the relative location characteristics of the pseudolite and the user.

A Design of Dual Frequency Bands Time Synchronization System for Synchronized-Pseudolite Navigation System

  • Seo, Seungwoo;Park, Junpyo;Suk, Jin-Young;Song, Kiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제3권2호
    • /
    • pp.71-81
    • /
    • 2014
  • Time synchronization system using dual frequency bands is designed and the error sources are analyzed for alternative synchronized-pseudolite navigation system (S-PNS) which aims at military application. To resolve near/far problem, dual frequency band operation is proposed instead of pulsing transmission which degrades level of reception. In dual frequency operation H/W delay should be considered to eliminate errors caused by inter-frequency bias (IFB) difference between the receivers of the pseudolites and users. When time synchronization is performed across the sea, multipath error is occurred severely since the elevation angle between pseudolites is low so total reflection can be happened. To investigate the difference of multipath effects according to location, pseudolites are set up coastal area and land area and performances are compared. The error source related with tropospheric delay is becoming dominant source as the coverage of the PNS is broadening. The tropospheric delay is measured by master pseudolite receiver directly using own pseudorange and slave pseudorange. Flight test is performed near coastal area using S-PNS equipped with developed time synchronization system and test results are also presented.

해양분야 응용을 위한 의사위성 실내항법기술의 적용 대상별 비교 연구 (The Research of Pseudolite technology by comparison with each applications for marine applications)

  • 심우성;서상현;이상정;박찬식;기창돈
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.6-11
    • /
    • 2002
  • A term of GNSS(Global Navigation Satellite System) is widely used to represent a navigation method for global area using satellite in space orbit 1his system can provide accurate and continuous position, and timing sources synchronized to UTC. There are, however, certain disadvantage that system can not operate without line of sight environment to satellite, or system failure of either satellite or control station. It is the pseduolite technology for using indoor and also for back-up equipment of foreign system failure. Especially, ocean applications widely use the GNSS system for navigation, surveying, timing, and management of traffic, so, system failure of GNSS will be very critical problem to affect many aspects of ocean field. In this paper, we experimented the pseudolite technology for several application field to compare the result in different environment. We used the common CDGPS algorithm for in-door navigation and experimented in ocean engineering basin with metallic wall and gymnasiums with concrete wall. We also investigated the comparison result and considerations for ocean applications of pseudolite technology.

  • PDF

Navigation Augmentation in Urban Area by HALE UAV with Onboard Pseudolite during Multi-Purpose Missions

  • Kim, O-Jong;Yu, Sunkyoung;No, Heekwon;Kee, Changdon;Choi, Minwoo;Seok, Hyojeong;Yoon, Donghwan;Park, Byungwoon;Jee, Cheolkyu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권3호
    • /
    • pp.545-554
    • /
    • 2017
  • Among various applications of the High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV), this paper has a focus on the Global Positioning System (GPS) utilizing pseudolite and its improved performance, particularly during the multi-purpose missions. In a multi-purpose mission, the HALE UAV follows a specified flight trajectory for both navigation applications and missions. Some of the representative HALE missions are remote exploration, surveillance, reconnaissance, and communication relay. During these operations, the HALE UAV can also be an additional positioning signal source as it broadcast signals using pseudolite. The pseudolite signal can improve the availability, accuracy, and reliability of the GPS particularly in areas with poor signal reception, such as shadowed regions between tall buildings. The improvement in performance of navigation is validated through simulations of multi-purpose missions of the solar-powered HALE UAV in an urban canyon. The simulation includes UAV trajectory generation at stratosphere and uses actual geographical building data. The results indicate that the pseudolite-equipped HALE UAV has the potential to enhance the performance of the satellite navigation system in navigationally degraded regions even during multi-purpose operations.

Analysis of Pseudolite Augmentation for Vessel Berthing

  • Cho, Deuk-Jae;Park, Sang-Hyun;Suh, Sang-Hyun
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.15-19
    • /
    • 2006
  • GPS has been increasingly exploited to provide positioning and navigation solutions for a variety of applications. In vessel berthing application, however, there are stringent requirements in terms of positioning accuracy, availability and integrity that cannot be satisfied by GPS alone. This is because the performance of satellite-based positioning and navigation systems are heavily dependent on both the number and the geometric distribution of satellite tracked by receivers. Due to the limited number of GPS satellites, a sufficient number of ‘visible’ satellites cannot be sometimes guaranteed. This paper discusses some issues associated with the implementation of ground-based pseudolite augmentation for vessel berthing. Pseudolite means small transmitter that transmits GPS-like signals in local area. Actually, pseudolite can play three different roles in GPS augmentation scheme, depending on the operational conditions. Firstly, in the case of kinematic GPS operation where there are no signal blockages, and more than five satellites are available, additional pseudolites strengthen the GPS satellite-pseudolite geometry, and more accurate and reliable positioning solution can be achieved. Secondly, in the case when there are adverse GPS operational environments in which the number of tracked satellites is less than four, pseudolites can complement the GPS signals. In the third case, GPS signals are completely unavailable, such as when operated indoor. In such cases the pseudolites can replace the satellite constellation. However, the first role will be considered in this paper, since more than four satellite signals can usually be tracked in most marine applications. This paper presents that the pseudolite-augmented precise positioning system can provides continuous centimeter-level positioning accuracy through comparison analysis of RDOP simulation result of the GPS satellite constellation and the pseudolite-augmented GPS satellite constellation.

  • PDF