• Title/Summary/Keyword: Pseudo-second-order kinetics

Search Result 216, Processing Time 0.026 seconds

Acid green-25 removal from wastewater by anion exchange membrane: Adsorption kinetic and thermodynamic studies

  • Khan, Muhammad Imran;Ansari, Tariq Mahmood;Zafar, Shagufta;Buzdar, Abdul Rehman;Khan, Muhammad Ali;Mumtaz, Fatima;Prapamonthon, Prasert;Akhtar, Mehwish
    • Membrane and Water Treatment
    • /
    • v.9 no.2
    • /
    • pp.79-85
    • /
    • 2018
  • In this work, batch adsorption of anionic dye acid green-25 (AG-25) from aqueous solution has been carried out at room temperature using anion exchange membrane (DF-120B) as a noval adsorbent. The effect of various experimental parameters such as contact time, membrane dosage, ionic strength and temperature on the adsorption of dye were investigated. Kinetic models namely pseudo-first-order, pseudo-second-order, Elovich, liquid film diffusion, Bangham and modified freundlich models were employed to evaluate the experimental data. Parameters like adsorption capacities, rate constant and related correlation coefficients for every model are calculated and discussed. It showed that adsorption of AG-25 onto DF-120B followed pseudo-first-order rate expression. Thermodynamic study indicates that adsorption of AG-25 onto DF-120B is an exothermic and spontaneous process.

Evaluation of Raw and Calcined Eggshell for Removal of Cd2+ from Aqueous Solution

  • Kim, Youngjung;Yoo, Yerim;Kim, Min Gyeong;Choi, Jong-Ha;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.5
    • /
    • pp.249-258
    • /
    • 2020
  • The potential use of egg shell and calcined egg shell as adsorbent was evaluated and compared to remove Cd2+ from aqueous solution. The samples were characterized using Thermogravimetry and Differential Thermal Analysis (TG/DTA), Scanning Electron Microscope (SEM), X-ray Diffractometer (XRD), Energy Dispersive X-ray Spectrometer (EDX) and BET Surface Analyzer. The batch-type adsorption experiment was conducted by varying diverse variables such as contact time, pH, initial Cd2+ concentrations and adsorbent dosage. The results showed that, under the initial Cd2+ concentrations ranged from 25 to 200 mg g-1, the removal efficiencies of Cd2+ by egg shell powder (ESP) were decreased steadily from 96.72% to 22.89% with increase in the initial Cd2+ concentration at 2.5 g of dosage and 8 h of contact time. However, on the contrary to this, calcined egg shell powder (CESP) showed removal efficiencies above 99% regardless of initial Cd2+ concentration. The difference in the adsorption behavior of Cd2+ may be explained due to the different pH values of ESP and CESP in solution. Cd2+ seems to be efficiently removed from aqueous solution by using the CESP with a basicity nature of around pH 12. It was also observed that an optimum dosage of ESP and CESP for nearly complete removal of Cd2+ from aqueous solution is approximately 5.0 g and 1.0 g, respectively. Consequently, Cd2+ is more favorably adsorbed on CESP than ESP in the studied conditions. Adsorption data were applied by the pseudo-first-order and pseudo-second-order kinetics models and Freundlich and Langmuir isotherm models, respectively. With regard to adsorption kinetics tests, the pseudo-second-order kinetics was more suitable for ESP and CESP. The adsorption pattern of Cd2+ by ESP was better fitted to Langmuir isotherm model. However, by contrast with ESP, CESP was described by Freundlich isotherm model well.

A Study of Kinetics and Adsorption Characteristics for Removal of Arsenate by Using Coal Mine Drainage Sludge in Aqueous Phase (석탄광산배수슬러지를 이용한 액상상태의 비소제거 흡착특성 및 반응속도에 관한 연구)

  • Lee, Se-Ban;Cui, Ming-Can;Jang, Min;Moon, Deok-Hyun;Cho, Yun-Chul;Khim, Jee-Hyeong
    • Journal of Environmental Science International
    • /
    • v.20 no.2
    • /
    • pp.241-249
    • /
    • 2011
  • In this research, equilibrium of adsorption and kinetics of As(V) removal were investigated. The coal mine drainage sludge(CMDS) was used as adsorbent. To find out the physical and chemical properties of CMDS, XRD (X-ray diffraction), XRF (X-ray fluorescence spectrometer) analysis were carried out. The CMDS was consist of 70% of goethite and 30% of calcite. From the results, an adsorption mechanism of As(V) with CMDS was dominated by iron oxides. Langmuir adsorption isotherm model was fitted well more than Freundlich isotherm adsorption model. Adsorption capacities of CMDS 1 was not different with CMDS 2 on aspect of amounts of arsenic adsorbed. The maximum adsorption amount of two CMDS were respectively 40.816, 39.682 mg/g. However, the kinetic of two CMDS was different. The kinetic was followed pseudo second order model than pseudo first order model. Concentrations of arsenic in all segments of the polymer in CMDS 2 does not have a constant value, but the rate was greater than the value of CMDS 1. Therefore, CMDS 2, which is containing polymer, is more effective for adsorbent to remove As(V).

Adsorption kinetics and isotherms of phosphate and its removal from wastewater using mesoporous titanium oxide

  • Lee, Kwanyong;Jutidamrongphan, Warangkana;Lee, Seokwon;Park, Ki Young
    • Membrane and Water Treatment
    • /
    • v.8 no.2
    • /
    • pp.161-169
    • /
    • 2017
  • The adsorption of phosphate onto mesoporous $TiO_2$ was investigated in order to reduce phosphorus concentrations in wastewater and provide a potential mode of phosphorus recovery. Three equilibrium isotherms were used to optimize and properly describe phosphate adsorption ($R^2$>0.95). The maximum capacity of phosphate on the adsorbent was found to be 50.4 mg/g, which indicated that mesoporous $TiO_2$ could be an alternative to mesoporous $ZrO_2$ as an adsorbent. A pseudo-second order model was appropriately fitted with experimental data ($R^2$>0.93). Furthermore, the suitable pH for phosphate removal by $TiO_2$ was observed to be in the range of pH 3-7 in accordance with ion dissociation. In contrast, increasing the pH to produce more basic conditions noticeably disturbed the adsorption process. Moreover, the kinetics of the conducted temperature study revealed that phosphate adsorption onto the $TiO_2$ adsorbent is an exothermic process that could have spontaneously occurred and resulted in a higher randomness of the system. In this study, the maximum adsorption using real wastewater was observed at $30^{\circ}C$.

Equilibrium, Kinetics and Thermodynamics Studies about Adsorption of Safranin by Granular Activated Carbon (입상 활성탄에 의한 Safranin의 흡착에 관한 평형, 동력학 및 열역학에 관한 연구)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.581-586
    • /
    • 2015
  • Adsorption of Safranin using granular activated carbon from aqueous solution was investigated. Batch experiments were carried out as a function of adsorbent dose, initial concentration, contact time and temperature. The equilibrium adsorption data were fitted to Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. Based on an estimated Langmuir separation factor, $R_L=0.183{\sim}0.254$ and a Freundlich separation factor, 1/n = 0.518~0.547, this process could be employed as an effective treatment method. Adsorption data were also modeled using the pseudo-first and second-order kinetic equations. It was shown that the pseudo-second-order kinetic equation could best describe the adsorption kinetics. The negative Gibbs free energy (${\Delta}G=-3.688{\sim}-7.220kJ/mol$) and positive enthalpy (${\Delta}H=33.126kJ/mol$) indicated that the adsorption process was spontaneous and endothermic.

Analysis of Sorption and Desorption Behaviors of Radionuclides (Cobalt and Strontium) in Natural Soil (자연 토양에서의 방사성 핵종(Co, Sr)의 흡/탈착 거동 특성 평가)

  • Cheon Kyeong-Ho;Shin Won Sik;Choi Jeong-Hak;Choi Sang June
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.485-495
    • /
    • 2005
  • This study was conducted to investigate sorption and desorption behaviors of radionuclides (Cobalt and Strontium) in natural soil. Sorption kinetics and isotherms were analyzed to predict sorption behaviors of radionuclides in natural soil and the experimental data were fitted to several sorption models. Desorption experiments were also performed with or without CMCD at constant pH and ion strength conditions. The results showed that $Sr^{2+}$ was more strongly sorbed than $Co^{2+}$ in natural soil. Both $Co^{2+}$ and $Sr^{2+}$ followed a pseudo-second order kinetics and Sips model. The desorption-resistance of $Co^{2+}$ and $Sr^{2+}$ was estimated using a natural surfactant Carboxymethyl-${\beta}$-cyclodextrin(CMCD) or non-desorbing fraction. Desorption of radionuclides was partially irreversible and $Sr^{2+}$ was more resistant than $Co^{2+}$ Addition of CMCD facilitated desorption of $Co^{2+}$ and $Sr^{2+}$ from soil.

  • PDF

Low concentration cadmium removal using weathered sand of basalt

  • Park, Jae Hong;Lee, Jae Kwan;Shin, Dong Seok
    • Membrane and Water Treatment
    • /
    • v.12 no.2
    • /
    • pp.51-58
    • /
    • 2021
  • The natural weathered sand of basalt (WSB) has been used for the removal of cadmium from aqueous solution. The influence of various parameters i.e., contact time, pH, weathered sand of basalt dosage, particle size of the weathered sand of basalt, temperature and initial cadmium concentration were analyzed. Cadmium adsorption kinetics was well described by the pseudo second order model. Adsorption equilibrium for cadmium was properly well fitted to Langmuir isotherm model with maximum adsorption capacity 0.50 mg/g. Compared with the other experimental results using various kinds of adsorbents at a low concentration (1.0 mg/L or so) similar to that of this study, the cadmium removal efficiency using weathered sand of basalt was higher. It has been demonstrated that weathered sand of basalt has a available alternative adsorbent for cadmium when its initial concentration is low.

Study on Adsorption Kinetic of Amaranth Dye on Activated Carbon (활성탄에 의한 아마란스 염료의 흡착동력학에 관한 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.97-102
    • /
    • 2011
  • The adsorption characteristics of amatanth dye by granular activated carbon were experimently investigated in the batch adsorption. Kinetic studies of adsorption of amaranth dye were carried out at 298, 308 and 318 K, using aqueous solutions with 100, 200 and 300 mg/L initial concentration of amatanth. It was established that the adsorption equilibrium of amaranth dye on granular activated carbon was successfully fitted by Langmuir isotherm equation at 298 K. The pseudo first order and pseudo second order models were used to evaluate the kinetic data and the pseudo second order kinetic model was the best with good correlation. Values of the rate constant ($k_2$) have been calculated as 0.1076, 0.0531, and 0.0309 g/mg h at 100, 200 and 300 mg/L initial concentration of amatanth, respectively. Thermodynamic parameter such as activation energy, standard enthalpy, standard entropy and standard free energy were evaluated. The estimated values for standard free energy were -5.08 - -8.10 kJ/mol over activated carbon at 200 mg/L, indicated toward a spontaneous process. The positive value for enthalpy, 38.89 kJ/mol indicates that adsorption interaction of amatanth dye on activated carbon is an endothermic process.

Adsorption Characteristics of Methylene Blue and Phenol from Aqueous Solution using Coal-based Activated Carbon (석탄계 활성탄에 의한 수중의 메틸렌블루와 페놀 흡착 특성)

  • Lee, Song-Woo;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1161-1170
    • /
    • 2013
  • The efficiency of coal-based activated carbon in removing methylene blue (MB) and phenol from aqueous solution was investigated in batch experiments. The batch adsorption kinetics were described by applying pseudo-first-order, pseudo-second-order, and first order reversible reaction. The results showed that the adsorption of MB and phenol occurs complexed process including external mass transfer and intraparticle diffusion. The maximum adsorption capacity obtained from Langmuir isotherm was 461.0 mg/g for MB and 194.6 mg/g for phenol, respectively. The values of activation parameters such as free energy (${\Delta}G^0$), enthalpy (${\Delta}H^0$), and entropy (${\Delta}S^0$) were also determined as -19.0~-14.9 kJ/mol, 25.4 kJ/mol, and 135.2 J/mol K for MB and 51.8~54.1 kJ/mol, -29.0 kJ/mol, and -76.4 kJ/mol K for phenol, respectively. The MB adsorption was found to be endothermic and spontaneous process. However, the CV adsorption was found to be exothermic and non-spontaneous process.

Removal Characteristics of Sr Ion by Na-A Zeolite Synthesized using Coal Fly Ash Generated from a Thermal Power Plant (화력발전소에서 발생하는 석탄비산재로부터 합성한 Na-A 제올라이트의 Sr 이온 제거 특성)

  • Lee, Chang-Han;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.26 no.3
    • /
    • pp.363-371
    • /
    • 2017
  • This study evaluates the adsorption properties of Sr ions in an aqueous solution of the synthetic zeolite (Z-Y1) prepared using coal fly ash generated from a thermal power plant. In order to investigate the adsorption characteristics, the effects of various parameters such as the initial concentrations of Sr ion, contact time, and solution pH were investigated in a batch mode. The Langmuir and Redlich-Peterson model fitted the adsorption isotherm data better than the Freundlich model. The maximum adsorption capacity of Sr ions, as determined the Langmuir model, was 181.68 mg/g. It was found that by varying the Sr ion concentration, pH, and temperature, the pseudo-second-order kinetic model describes the adsorption kinetics of the Sr ion better than the pseudo-first-order kinetic model. The calculated thermodynamic parameters of ${\Delta}H^0$ and ${\Delta}G^0$ showed that the adsorption of Sr ions on Z-Y1 was occurred through a spontaneous and an endothermic reaction. We found that the adsorption of Sr ions by Z-Y1 was more affected by pH than by temperature and Sr ion concentration.