• Title/Summary/Keyword: Pseudo-nitzschia

Search Result 39, Processing Time 0.031 seconds

Characteristics of Phytoplankton Communities in the Coastal Waters of Power Plant (발전소 주변해역 식물플랑크톤의 군집 특성)

  • Kang, Yeon-Shik
    • ALGAE
    • /
    • v.23 no.1
    • /
    • pp.31-52
    • /
    • 2008
  • This study analyzes characteristics of phytoplankton communities around Wolseong nuclear power plant by selecting 16 stations from July 2006 to June 2007 and understands the influences on standing crops and chlorophyll a of phytoplankton by passing through the cooling water system. The total species number is 283, among which diatoms is 208 occupying 73.5% of total taxa. The mean of total standing crops is 469,380-3,704,114 cells L-1. It is the highest in April 2007 because blooming of Chaetoceros socialis occurs during this period. The mean standing crops of microplankton and nanoplankton are average 129,666-3,392,640 cells L-1 and 240,943-650,505 cells L-1 respectively, which occupy 54.01% and 46.54% of total standing crops. The mean concentrations of total chlorophyll a is 0.64-5.39 μg L-1. The mean concentrations of chlorophyll a of microplankton, nanoplankton and picoplankton are 1.33 μg L-1, 0.21 μg L-1 and 0.49 μg L-1 respectively. Dominant species around Wolseong neclear power plant during this study are Chaetoceros debilis, Chaetoceros socialis, Leptocylindrus danicus, Pseudo-nitzschia fraudulenta, P. subfraudulenta and Thalassiosira decipiens. Fluctuation rates of standing crops and chlorophyll a concentrations of phytoplankton passing through the cooling water system are 22.80% and 50.48% respectively. Decrease of standing crops and chlorophyll a concentrations of phytoplankton means that community structure of phytoplnakton may change at the discharge areas.

Ballast-water Microphytoplankton Diversity and Survivability from International Ships Berthed at Ulsan and Pyeongtaek Ports, Korea (울산과 평택항에 정박된 국제상선의 평형수에서 소형식물플랑크톤의 활성능력)

  • Baek, Seung-Ho;Jang, Min-Chul;Jang, Pung-Guk;Shin, Kyoung-Soon
    • Ocean and Polar Research
    • /
    • v.33 no.2
    • /
    • pp.113-125
    • /
    • 2011
  • In order to assess the survival success of microphytoplankton species in ship ballast water, we examined microphytoplankton diversity from international commercial ships berthed at Ulsan and Pyeongtaek Ports, Korea, and also subjected them to laboratory studies. The ages of ballast water in each ship ranged from 1 to 365 days. Vessels originated from coastal China (Weihai, Lianyunsang and Shanghai), Chile, and from the Yellow and Pacific Oceans. The numbers of species and phytoplankton standing crops in uploaded ballast water were significantly related to the age of ballast water. The most diverse taxonomic group was diatoms. In the laboratory study, the value of in vivo fluorescence in M/V Spring Lyra gradually increased with increasing nutrients such as nitrate and phosphate. Phytoplankton in new (9 days), medium (31 days) and old (365 days) ballast water successfully survived under typical nutrient condition of port water and F/2 medium at $15^{\circ}C$ and $20^{\circ}C$, whereas phytoplankton in ballast water treatment did not survive, regardless of optimal temperature. Colonization process was dominated by diatoms; Skeletonema coastatum for M/V Spring Lyra, Thalassiosira pseudonana and Thalassiosira for M/V Han Yang, Thalassiosira pacifica and Odontella aurita for M/V Modern Express, and Chaetoceros pseudocurvisetus and Pseudo-nitzschia seriata for M/V Asian Legend. The successful establishment of non-native species was also related to nutrient richness. Our laboratory design can be applied as a practical tool to assess the survivability of invasive microphytoplankton introduced into local waters of Ulsan and Pyeongtaek.

The Effect of Enhanced Nitrate Input on the Temporal Variation of the Plankton Community in a Mesocosm (질산염 첨가에 따른 중형폐쇄생태계 내 플랑크톤 군집의 변화)

  • Kang, Jung-Hoon;Kim, Woong-Seo;Shin, Kyoung-Soon;Chang, Man;Hwang, Keun-Choon
    • Ocean and Polar Research
    • /
    • v.27 no.3
    • /
    • pp.341-349
    • /
    • 2005
  • Temporal variation of the natural planktonic community in the Southern Sea of Korea was investigated by using low floating enclosed bags (3.2m deep and 2,500 liter) in order to understand the effect of enriched nitrate on the planktonic community in the spring (March-April) of 2002. Prior to beginning the incubation, the bags were placed in two different concentrations of nitrate, which consisted of control (ambient water) and experimental mesocosms (final concentration of $12{\mu}M$). The nitrate concentration in the experimental mesocosms remained significantly higher than those in control mesocosms throughout the study period (ANOYA, p<0.001). Following the addition of nitrate, abundance and chi-a concentration of phytoplankton peaked on Day 1, when diatoms established the peak in the experimental mesocosms. Diatoms consisted mainly of Thalasxiosira decipiens, Pseudo-nitzschia pungem, Leptocylindrus danicu, Thalassionema nitzschioides, Chaetoceros pseudocrinitus and Actinoptychus senariu. However, the peak did not lead to the difference in abundance and composition of phytoplankton between control and experimental mesocosms during the study period. The dinoflagellates began to increase soon after the diatoms decreased in all mesocosms. Copepods, as a dominant group in the rnosozooplankton community, showed no immediate peak in relation to the nitrate addition, but only their own developmental process from the eggs to adult stage during the study period. The bottom-up control from enriched nitrate via phytoplankton to adult copepods was not distinguished in terms of the abundance of the planktonic community. This might stem from the relatively low nitrate availability of phytoplankton at no N-limited seawater and the weak coupling between rapidly sunken diatoms and copepods through the water column.

Effects of Nutrient Property Changes on Summer Phytoplankton Community Structure of Jangmok Bay (장목만에서 여름철 영양염 특성 변화가 식물플랑크톤 군집구조에 미치는 영향)

  • Jang, Pung-Guk;Jang, Min-Chul;Lee, Woo-Jin;Shin, Kyoung-Soon
    • Ocean and Polar Research
    • /
    • v.32 no.2
    • /
    • pp.97-111
    • /
    • 2010
  • Phytoplankton production is affected by various physico-chemical factors of environment. However, one of the most critical factors generally accepted as controlling primary production of phytoplankton is nutrients. It has recently been found that the succession of phytoplankton groups and species are closely related to the chemical properties of ambient water including nutrient limitation and their ratios. In Jangmok Bay, silicate and nitrate are primarily supplied by rainfall, while phosphate and ammonia are supplied by wind stress. Typhoons are associated with rainfall and strong wind stress, and when typhoons pass through the South Sea, such events may induce phytoplankton blooms. When nutrients were supplied by heavy rainfalls during the rainy season and by summer typhoons in Jangmok Bay, the dominant taxa among the phytoplankton groups were found to change successively with time. The dominant taxon was changed from diatoms to flagellates immediately after the episodic seasonal events, but returned to diatoms within 3~10 days. Pseudo-nitzschia spp. were dominant mainly in the presence of low phosphate levels during the first of the survey which included the rainy season, while Skeletonema costatum was dominant when phosphate concentrations were high due to the strong wind stress during the latter half of the survey as a result of the typhoon. The competition between S. costatum and Chaetoceros spp. appeared to be regulated by the silicate concentration. S. costatum preferred high silicate and phosphate concentrations; however, Chaetoceros spp. were able to endure low silicate concentrations. These results implied that, in coastal ecosystems, the input patterns of each nutrient supplied by rainfall and/or wind stress appeared to contribute to the summer succession of phytoplankton groups and species.

The Spatial and Temporal Variation of Phytoplankton in Youngsan River Estuary (영산강 하구역 식물플랑크톤의 시공간적 변동)

  • Kwon, Kee-Young;Youn, Seok-Hyun;Lee, Jae-Seong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2009.06a
    • /
    • pp.149-150
    • /
    • 2009
  • 영산강 하구둑에 의해 폐쇄내만의 조건을 가진 영산강 하구역에서 식물플랑크톤의 계절변동을 파악하고자 2008년에 계절별로 7개 정점에서 조사하였다. 영산강 하구역에서 출현한 식물플랑크톤 개체수는 14$\sim$34,958cells/mL의 범위를 보였다. 조사시기별로는 7월에 평균 10,796cells/mL가 출현하여 조사기간 중 가장 많은 출현 개체수를 보였고, 이어서 9월(평균 3,327cells/mL), 5월(평균 590cells/mL), 11월(평균 34cells/mL) 순으로 감소하여 조사시기별 출현개체수의 변동이 매우 심하였다. 규조류는 모든 조사시기에 걸쳐 최고의 점유율을 나타내었고 11월을 제외하면 전체 개체수의 90%이상을 차지하고 있어 규조류가 영산강 하구역의 식물플랑크톤 생물량을 좌우하고 있는 종임을 알 수 있었다. 영산강 하구역에서 출현한 식물플랑크톤의 제 1 우점종은 5월에 Eucampia zodiacus(83.1%), 7월에 Chaetoceros curvisetus(24.2%), 9월에 Pseudo-nitzschia delicatissima(94.3%), 11월에는 Chroomnnas류(33.6%)로 변화하였다. 5월과 9월은 한 종이 전체 식물플랑크톤 개체수의 80% 이상을 차지하는 극우점양상을 보여주었고, 7월에는 C. curvisetus, Skeleton듬 costatum 및 Chaetoceros sp. 등이 유사한 점유율로 우점하고 있었다. 영산강 하구역의 식물플랑크톤 종다양성지수는 0.228$\sim$2.260의 범위로 소수의 우점종에 의해 전체 군집의 분포양상이 결정되는 전형적인 연안, 하구수역의 군집 특성을 보이고 있었다.

  • PDF

Size and Species Composition of Phytoplankton Related to Anthropogenic Environmental Changes in Doam Bay (인위적 담수 유입에 의한 도암만의 환경변화와 식물플랑크톤 변동)

  • Yang, Eeng-Ryul;Jeong, Byung-Kwan;Lee, Eo-Jin;Ryu, Dong-Ki;Shin, Yong-Sik
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1183-1197
    • /
    • 2014
  • Doam Bay is an estuary where harmful algal blooms (HABs) such as red tides develop frequently in summer. The bay also is influenced by freshwater inflow from Tamjin River in upper regions as well as from an artificial lake in lower regions. Phytoplankton size and species composition were investigated at six stations located in the lower regions in April, June and July, 2007. Physical properties (temperature, salinity and SS) were intensively measured for 3 days (5 occasions) after the freshwater discharges from the dike. The freshwater discharge affected temperature, salinity and turbidity in the study sites adjacent to the freshwater lake. Phytoplankton biomass was larger in April than June and it increased more in July. An explicit shift of species composition was observed. Diatoms were dominant in April and June (>70%) whereas their abundances greatly decreased and chlorophytes increased in July. Pseudo-nitzschia sp. was dominant at all stations (except St. 2) and this change was also detected in ecological indices such as diversity and dominance index.

Short-term Changes of Community Structure of Phytoplankton in Summer Around Namhae Island of Korea (여름철 남해도 연안 식물플랑크톤 군집 구조의 단기 변화)

  • Im, Wol Ae;Gang, Chang Geun;Kim, Suk Yang;Lee, Sam Geun;Kim, Hak Gyun;Jeong, Ik Gyo
    • ALGAE
    • /
    • v.18 no.1
    • /
    • pp.49-58
    • /
    • 2003
  • The short-term dynamics of the summer phytoplankton community structure were investigated in coastal waters around Namhae Island, the Southern Sea of Korea. The study was based on a comprehensive survey constituting 39 collections from 13 stations on July 18-22, August 1-2, 14-16 and 27-30, respectively. The community structure was analysed using cluster analysis and important environmental correlates of the assemblage structure were identified with canonical correspondence analysis (CCA). Water temperature, salinity, NO₂, NO₃, NH₄, PO₄, chlorophyll a and transparency were measured as physico-chemical environmental factors which may be associated with the phytoplankton community structure. Variations of salinity and concentrations of NO₃ and chlorophyll a were not significant. In addition to warmer water temperature, concentrations of NO₂, NO₄and PO₄ decreased at the beginning of August. And transparency was deeper and water column became very unstable after the middle of August. A wide taxonomic diversity was encountered during the survey, including a total of 121 taxa which was composed of 72 diatoms, 48 dinoflagellates and 1 euglenoid species. Cluster analysis showed that the Phytoplankton community could be divided into 4 distinct groups, indicating rapid changes of the community in the short course of this survey. These phytoplankton groups also showed distinctive dispersion patterns in 2-dimensional canonical space, indicating distinct groupings for stations at each survey. Dominant taxa of diatoms (Chaetoceros curvisetus, Chaetoceros spp., Leptocylindrus danicus, Leptocylindrus mediteraneus, Skeletonema costanum, and Pseudo-nitzschia pungen) clustered in region of CCA space corresponding to stations surveyed at the middle of July. Dominant taxa of dinoflagellates were tightly associated with stations surveyed at the middle (Karenia breve) and end (Cochlodinium polykrikoides and Polykrikos schwartzii) of August. The CCA also showed that the phytoplankton community compositions were highly associated with water temperature, transparency, NO₂, NH₄ and PO₄, suggesting that gradients in physical and nutrient conditions affect short-term changes in phytoplankton composition.

Distributional characteristics of risky phytoplankton species at inner and outer sites around Incheon seaport of Korea (인천항 내, 외에서 식물플랑크톤 위해종의 분포특성)

  • Kwon, Oh Youn;Kang, Jung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6958-6965
    • /
    • 2014
  • This study examined the occurring pattern of potential risky species and the related abiotic factors for port-specific environmental management considering the control of ballast water-induced foreign species at Incheon seaport. From a total of 62 species observed during the study, 13 red-tide and 7 toxic phytoplankton, normally occurring species in Korean waters, occurred from the seasonal investigation at the inner and outer sites of the Incheon seaport from 2007 to 2009. The number of potential risky phytoplankton was relatively high at the outer site of the port during summer and winter. Red-tide species, such as Skeletonema spp., Thalassiosira nordenskioldii, and Paralia sulcata, dominated the total standing crops at the inner site (avg. 72.4%) and outer site (avg. 77.6%) in spring and summer, being positively correlated with the concentrations of total suspended solids (TSS) and pH (p<0.05). In summer, the red-tide species (Skeletonema spp.) and toxic species (Alexandrium catenella, A. tamarense, Dinophysis acuminata and Pseudo-nitzschia spp.) co-dominated (avg. 74.2%) at the inner site, while Skeletonema spp. and P. sulcata predominated (avg. 67.2%) at the outer site. During the study periods, the toxic species were significantly and positively correlated with the chemical oxygen demand (COD), dissolved inorganic nitrogen, silicate and phosphate (p < 0.05). The chlorophyll-a (chl-a) concentration of phytoplankton at the outer site ranged from 1.49 to $5.46{\mu}g/L$ on average, which was 3-5 times higher than that at the inner site in spring, summer and autumn, whereas there was no difference in the concentration between inner (avg. $0.94{\mu}g/L$) and outer (avg. $0.95{\mu}g/L$) sites in winter. In summary, diverse red-tide species dominated and a relatively high chl-a concentration existed at the outer site, whereas a relatively high number of toxic species and low chl-a concentration was observed at the inner site in summer. The potential risky species can outbreak in association with the concentration of nutrients, COD and TSS, suggesting that distinctive management of potential risky species is needed considering the environmental characteristics of Incheon seaport.

The Effect of Enhanced Zooplankton on the Temporal Variation of Plankton in a Mesocosm (인위적인 동물플랑크톤 첨가에 따른 중형 폐쇄생태계 내 플랑크톤 변동)

  • Kang Jung-Hoon;Kim Woong-Seo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.2
    • /
    • pp.109-119
    • /
    • 2006
  • This study investigated the effect of artificially enhanced mesozooplankton on the phytoplankton dynamics during fall blooming period using a mesocosm in Jangmok bay located in the Southern Sea of Korea in 2001. The four bags with 2,500 liter seawater containment were directly filled with the ambient water. And then, abundances of mesozooplankton in two experimental bags were treated 6 times higher than those in control bags by towing with net($300{\mu}m$) through the ambient water. Phytoplankton community between control and experimental bags were not significantly different in terms of chlorophyll-a(chl-a) concentration and standing crop (one-way ANOVA, p>0.05) during the study period. Initial high standing crop and chl-a concentration of phytoplankton drastically decreased and remained low until the end of the experiment in all bags. Diatoms, accounting for most of the phytoplankton community, consisted of Skeletonema costatum, Pseudo-nitzschia seriata, Chaetoceros curvisetus, Ch. debilis, Cerataulina pelagica, Thalassiosira pacifica, Cylindrotheca closterium, and Leptocylindrus danicus. Noctiluca scintillans dominated the temporal variation of mesozooplankton abundances, which peaked on Day 10 in the control and experimental bags, while the next dominant copepods showed their peak on Day 7. Shortly after mesozooplankton addition, copepod abundance in the experimental bags was obviously higher than that in the control bags on Day 1, however, it became similar to that in the control bags during the remnant period. It was supported by the higher abundance and length of both ctenophores and hydromedusae in experimental bags relative to the control bags. However, the cascading trophic effect, commonly leading to re-increase of phytoplankton abundance, was not found in the experimental bags, indicating that copepods were not able to control the phytoplankton in the bags based on the low grazing rate of Acartia erythraea. Besides that, rapidly sunken diatoms in the absence of natural turbulence as well as N-limited condition likely contributed the no occurrence of re-increased phytoplankton in the experimental bags.

  • PDF

Temporal and Spatial Variability of Phytoplankton Communities in the Nakdong River Estuary and Coastal Area, 2011-2012 (2011-2012년 낙동강 하구 및 연안역에서 식물플랑크톤 군집의 시·공간적 변화)

  • Chung, Mi Hee;Youn, Seok-Hyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.4
    • /
    • pp.214-226
    • /
    • 2013
  • To understand the changing patterns in phytoplankton communities, we conducted 12 surveys along the Nakdong River, its estuary, and adjacent coastal areas between January 2011 and October 2012 (during the period of barrage construction and sediment dredging). Monthly precipitation ranged from 0 to 502 mm during the survey period, and salinity ranged between 0.1 psu and 0.3 psu in the Nakdong River, regardless of the depth, indicating no seawater influence, while salinity showed large seasonal fluctuations in the estuarine and coastal station, ranging from 0.1 psu to 34.8 psu. A total of 402 phytoplankton species were identified, 178 species from the river and 331 species from the estuary and coastal areas. Phytoplankton standing crop increased in 2012 compared to that in 2011, and was found to be highest in the river, followed by the estuary and coastal areas. Among the top 20 species in frequency of occurrence and dominance, Stephanodiscus spp., Aulacoseira granulata, and Aulacoseira granulata var. angustissima and Pseudo-nitzschia spp. were important species along the river-estuary-coastal areas. Diatoms were the major taxonomic group inhabiting the Nakdong river-estuary-coastal areas. A comparison of seasonal dominant phytoplankton species revealed a slight decrease over the years, from 13 species in 2011 to 10 species in 2012. However, no significant difference was found in the diversity of phytoplankton species between the two survey years, although lightly greater diversity was observed in the coastal areas than in the river and estuary. Cluster analysis with community composition data revealed that the community structure varied significantly in 2011 depending on the time of survey, while in 2012, it hardly showed any variation and was simpler. An increase in the phytoplankton standing crop, fewer dominant species, and simpler community structure in 2012 compared to those in 2011 are probably due to the rapid environmental changes along the Nakdong River. To investigate these ecological relationships, it is necessary to conduct further studies focusing on integrated analyses of biocenosis, including phytoplankton with respect to the changes in nutrient distribution, variation of freshwater discharge, and effect area of freshwater in the Nakdong estuary and adjacent coastal areas.