• Title/Summary/Keyword: Pseudo-dynamic test

Search Result 106, Processing Time 0.026 seconds

Thiele Small Parameters Estimation for Pseudo Loudspeaker within 10 mm Grade Circular-type Microspeaker (10 mm급 원형 마이크로스피커의 가상 스피커 TS 매개변수 규명)

  • Park, Seok-Tae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1112-1118
    • /
    • 2007
  • It was discussed to identify Thiele Small Parameters for Pseudo loudspeaker within 10mm grade microspeaker attached to closed-box using known dynamic mass of moving parts. Also, enhanced circuit model for vented-box micro speaker system was used to more accurately simulate electrical impedance curves for real vented-box microspeaker system and compared to test results. Consequently, it showed that micro speaker could be modeled by pseudo loudspeaker TS parameters similar to general loudspeaker. Vented-box microspeaker model with pseudo loudspeaker TS parameters was well suited to describe real microspeaker. Also, it was proposed to estimate volume of rear closed-box of microspeaker without design specifications.

Pseudo Dynamic Earthquake Response Tests on Steel Frames with Slit Plate Damper (슬릿형 댐퍼를 부착한 철골조 시스템의 가동적 지진응답실험)

  • Lee, Seung-Jae;Park, Jae-Seong;Oh, Sang-Hoon;Ryu, Hong-Sik
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.145-150
    • /
    • 2008
  • The purpose of this study is to propose damper system which is easy to design, which can ensure against risks, and to verify earthquake response characteristics. For this study, the pseudo dynamic earthquake response tests carried out for steel frames with two types of seismic and vibration control device. As a result, in case of using the slit plate damper as a vibration control device proposed by this study, the damper having higher stiffness than main-structure turned to the state of plasticity by little displacement has been proved to be able to absorb earthquake energy.

  • PDF

Structural Behavior of Reinforced Concrete Short Columns by Pseudo-Dynamic Test (유사동적실험을 이용한 철근콘크리트 단주실험에 관한 연구)

  • Min, Kyung-Min;Kim, Yong-In;Lee, Kang-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.73-76
    • /
    • 2008
  • According to the survey of earthquake disaster, low-rise reinforced concrete building larger by the extent of damage and because of the underlying distribution of reinforced concrete structures more, it is very likely to be disasters. The purpose of this study is to discuss how strength and stiffness of each system in low-rise reinforced concrete buildings consisted of extremely brittle, shear and flexural failure lateral-load resisting systems have influence on seismic capacities of the overall system. Generally, if shear failure members including extremely brittle failure members are failed during an earthquake, the lateral-load resisting seismic capacities of RC buildings are lower rapidly, and if the seismic capacities of shear failure members were higher than that of flexural failure members, failures of shear failure members have influence on failures of the overall system. The result of this paper will provide pseudo-dynamic test of carried out to estimate the possibility of proposals.

  • PDF

Evaluation of Seismic Performance on Shear Walls in Steel House (스틸하우스 전단벽체의 내진성능평가)

  • 이재석;이승은;홍건호;김원기
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.65-72
    • /
    • 2002
  • This study estimates steel house shear wall's seismic performance depending on trend of seismic design. As a result at cyclic-test, the capability of energy dissipation about X1SPCH during this test is good enough. The capability of energy dissipation of X3SPCH and X4SPCH was better than that of X1SPCH. The X2SPCH which is similar to real X-braced shear wall has better seismic performance than shear wall braced with structural sheathing materials on pseudo-dynamic test.

The effect of infill walls on the seismic behavior of boundary columns in RC frames

  • Fenerci, Aksel;Binici, Baris;Ezzatfar, Pourang;Canbay, Erdem;Ozcebe, Guney
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.539-562
    • /
    • 2016
  • The seismic behavior of a ${\frac{1}{2}}$ scaled, three-story three-bay RC frame with masonry infill walls was studied experimentally and numerically. Pseudo-dynamic test results showed that despite following the column design provisions of modern seismic codes and neglecting the presence of infill walls, shear induced damage is unavoidable in the boundary columns. A finite element model was validated by using the results of available one-story one-bay frame tests in the literature. Simulations of the examined test frame demonstrated that boundary columns are subjected to shear demands in excess of their shear capacity. Seismic assessment of the test frame was conducted by using ASCE/SEI 41-06 (2006) guidelines and the obtained results were compared with the damage observed during experiment. ASCE/SEI 41-06 method for the assessment of boundary columns was found unsatisfactory in estimating the observed damage. Damage estimations were improved when the strain limits were used within the plastic hinge zone instead of column full height.

Hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure evaluated by FEA and pseudo-dynamic testing

  • Ju-Seong Jung;Bok-Gi Lee;Kang-Seok Lee
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.217-240
    • /
    • 2024
  • The purpose of this study is to propose new hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure. Through previous study, the dual lateral force-resisting system composed of shear and flexural failure members has a new failure mechanism that cooperates to enhance the flexural capacity of the flexural failure member even after the failure of the shear member, and the existing theoretical equation significantly underestimates the ultimate strength. In this study, the residual lateral strength mechanism of the dual lateral force-resisting system was analyzed, and, as a result, an equation for estimating the residual flexural strength of each shear-failure member was proposed. The residual flexural strength of each shear-failure member was verified in comparison with the structural testing results obtained in previous study, and the proposed residual flexural strength equation for shear-failure members was tested for reliability using FEA, and its applicable range was also determined. In addition, restoring-force characteristics for evaluating the seismic performance of the dual lateral force-resisting system (nonlinear dynamic analysis), reflecting the proposed residual flexural strength equation, were proposed. Finally, the validity of the restoring-force characteristics of RC buildings equipped with the dual lateral force-resisting system proposed in the present study was verified by performing pseudo-dynamic testing and nonlinear dynamic analysis based on the proposed restoring-force characteristics. Based on this comparative analysis, the applicability of the proposed restoring-force characteristics was verified.

On-line Tests on Collapse Mode Controlled Steel Frame (붕괴모드 컨트롤형 철골조 시스템의 온라인 지진응답실험)

  • Lee, Seung-Jae;Oh, Sang-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.1
    • /
    • pp.47-52
    • /
    • 2009
  • In this study, it is demonstrated by a pseudo dynamic earthquake response tests that combination of semi-rigid partial-strength using the high performance-high strength bolts and inter-story hysteretic damper system creates a fairly good structural system that satisfies not only the serviceability requirement under moderate earthquakes but unexpected failure of damper system.

  • PDF

Dynamic Characteristics Estimation of the Oculomotor control System using Band-Limited Pseudo Random Signals (의사 랜덤 신호에 의한 동안계의 동특성 추정)

  • 김성환;박상예
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.4
    • /
    • pp.12-20
    • /
    • 1981
  • In this paper, Band-limlted Gaussian Random Noise and PRBS(pseudo random hinary sequence) are used as a test signals to estimate the dynamic characteristics of the ocuiomotor system. Eye movements of the human subject are measured by E.O.G(electro-oculography) and the control characteristics of the oculomotor system are studied by random signal an-alysis based on the statistical communication theory. The conclusions are summerized as follows. (1) From the frequency response, the gain curve rises slightly at the regions of 0.7~0.9 Hz and 1.8~2 Hz due to the saccades which are occurred during usual tracking. (2) The average rate of information transfer by the oculomotor control system is 1.24 bits/sec, being calculated from the power spectral density and the cross spectral density for the Gaussian random input.

  • PDF

Chord rotation demand for effective catenary action of RC beams under gravitational loadings

  • Tsai, Meng-Hao
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.327-345
    • /
    • 2016
  • Many experimental and analytical studies have been conducted with beam-column subassemblages composed of a two-span beam to investigate the progressive collapse resistance of RC frames. Most study results reveal a strength-decreased transition phase in the nonlinear static load-deflection curve, which may induce dynamic snap-through response and increase the chord rotation demand for effective catenary action (ECA). In this study, the nonlinear static response is idealized as a piecewise linear curve and analytical pseudo-static response is derived for each linearized region to investigate the rotation demands for the ECA of the two-span RC beams. With analytical parameters determined from several published test results, numerical analysis results indicate that the rotation demand of 0.20 rad recommended in the design guidelines does not always guarantee the ECA. A higher rotation demand may be induced for the two-span beams designed with smaller span-to-depth ratios and it is better to use their peak arch resistance (PAR) as the collapse strength. A tensile reinforcement ratio not greater than 1.0% and a span-to-depth ratio not less than 7.0 are suggested for the two-span RC beams bridging the removed column if the ECA is expected for the collapse resistance. Also, complementary pseudo-static analysis is advised to verify the ECA under realistic dynamic column loss even though the static PAR is recovered in the nonlinear static response. A practical empirical formula is provided to estimate an approximate rotation demand for the ECA.

Seismic Performance Evaluation of R/C Frame Apartment Strengthened with Kagome Truss Damper External Connection Method by Pseudo Dynamic Test (유사동적실험에 의한 외부접합형 카고메 트러스 제진장치가 설치된 RC 라멘조 공동주택의 내진성능 평가)

  • Heur, Moo-Won;Chun, Young-Soo;Hwang, Jae-Seung;Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.23-34
    • /
    • 2015
  • Recently a new damper system with Kogome truss structure was developed and its mechanical properties were verified based on the laboratory test. This paper presents a Kagome truss damper external connection method for seismic strengthening of RC frame structural system. The Kagome external connection method, proposed in this study, consisted of building structure, Kagome damper and support system. The method is capable of reducing earthquake energy on the basis of the dynamic interaction between external support and building structures using Kagome damper. The pseudo-dynamic test, designed using a existing RC frame apartment for pilot application of LH corporation, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and response ductility. Test results revealed that the proposed Kagome damper method installed in RC frame enhanced conspicuously the strength and displacement capacities, and the method can resist markedly under the large scaled earthquake intensity level.