• 제목/요약/키워드: Pseudo-boehmite

검색결과 18건 처리시간 0.025초

금속 및 유리 기판 위에 알루미나 졸을 바인더로 한 $TiO_2$광 촉매의 코팅 (The Coating of Photocatalytic $TiO_2$on Metal and Glass using Alumina Sols as a Binder)

  • 석상일;안복엽;최경훈;서태수;유영문
    • 한국세라믹학회지
    • /
    • 제38권7호
    • /
    • pp.621-627
    • /
    • 2001
  • 알루미나 졸에 평균 25nm의 TiO$_2$(Degussa P25) 광 촉매 분말을 분산하여 광촉매 코팅제를 제조하였다. 점도 약 24 cps를 가지 4.4 wt%의 알루미나 졸로부터 약 300nm 두께의 코팅막이 제조되었으며, 졸 점도의 증가에 비례하여 코팅막의 두께도 증가하였다. TiO$_2$광 촉매의 코팅용 바인더로 이용한 알루미나 졸의 결정형은 25~30$0^{\circ}C$에서 pseudo boehmite (AlOOH)이었으며, 50$0^{\circ}C$ 이상에서는 ${\gamma}$-Al$_2$O$_3$으로 전환되었다. AlOOH/TiO$_2$코팅막은 oleic acid와 humic acid에 대한 기상 및 수상 조건에서의 광 촉매 실험에서 우수한 유기물의 광분해 효능을 나타내었다. 아울러 EGI(Electro-Galvanized Iron)에 코팅된 AlOOH/TiO$_2$코팅막은 내식성 및 내지문성의 효과도 부수적으로 나타내었다.

  • PDF

침전법으로 제조한 Alumina 분말의 특성(1): 알루미늄 수산\ulcorner루 (Properties of Alumina Powder Prepared by Precipitation Method(I): Aluminum Hydrate)

  • 홍기곤;이홍림
    • 한국세라믹학회지
    • /
    • 제25권2호
    • /
    • pp.111-116
    • /
    • 1988
  • Aluminum hydrates were prepared by precipitation method using Al2(SO4)3$.$18H2O as a starting material and NH4OH as precipitation agent. The phases of aluminum hydrate were changed from amorphous aluminum hydrate to pseudo-boehmite of AlOOH form and bayerite, gibbsite, hydragillite and norstrandite of Al(OH)3 form with increasing pH. As pH increased, agglomeration phenomena were reduced. Aluminum hydrates of AlOOH and Al(OH)3 form represented dehydration of structural water near 175$^{\circ}C$ and 385$^{\circ}C$, and 280$^{\circ}C$, respectively. As the ratio of Al(OH)3 to AlOOH increased, specific surface area was reduced.

  • PDF

Phosphate Removal from Aqueous Solution by Aluminum (Hydr)oxide-coated Sand

  • Han, Yong-Un;Park, Seong-Jik;Park, Jeong-Ann;Choi, Nag-Choul;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • 제14권3호
    • /
    • pp.164-169
    • /
    • 2009
  • A powder form of aluminum (hydr)oxides is not suitable in wastewater treatment/filtration systems because of low hydraulic conductivity and large sludge production. In this study, aluminum (hydr)oxide-coated sand (AOCS) was used to remove phosphate from aqueous solution. The properties of AOCS were analyzed using a scanning electron microscopy (SEM) combined with an energy dispersive X-ray spectrometer (EDS) and an X-ray diffractometer (XRD). Kinetic batch, equilibrium batch, and closed-loop column experiments were performed to examine the adsorption of phosphate to AOCS. The XRD pattern indicated that the powder form of aluminum (hydr)oxides coated on AOCS was similar to a low crystalline boehmite. Kinetic batch experiments demonstrated that P adsorption to AOCS reached equilibrium after 24 h of reaction time. The kinetic sorption data were described well by the pseudo second-order kinetic sorption model, which determined the amount of P adsorbed at equilibrium ($q_e$ = 0.118 mg/g) and the pseudo second-order velocity constant (k = 0.0036 g/mg/h) at initial P concentration of 25 mg/L. The equilibrium batch data were fitted well to the Freundlich isotherm model, which quantified the distribution coefficient ($K_F$ = 0.083 L/g), and the Freundlich constant (1/n = 0.339). The closed-loop column experiments showed that the phosphate removal percent decreased from 89.1 to 41.9% with increasing initial pH from 4.82 to 9.53. The adsorption capacity determined from the closed-loop experiment was 0.239 mg/g at initial pH 7.0, which is about two times greater than that ($q_e$ = 0.118 mg/g) from the kinetic batch experiment at the same condition.

합성 Dawsonite의 물리적, 화학적 성질 (Some Physical and Chemical Properties of Synthesized Dawsonite)

  • 권상욱
    • 대한화학회지
    • /
    • 제13권2호
    • /
    • pp.149-156
    • /
    • 1969
  • $NaAl(OH)_2CO_3$was synthesized using colloidal earth (Allophane) as the starting material and some of its were studied in detail. It was found that Dawsonite was formed in the pH range (pH 12.5~12.0) that the concentration of $HCO_3^-$ was just begun to increase and the presence of $HCO_3^-$ in the product was clarified from the infrared absorption spectrum. The chemical formular of Dawsonite was therefore presumed as $NaAlO (OH) HCO_3$. From toahhe results of X-ray powder diffraction, both peaks at 5.7 $\AA$ and 2.8 $\AA$ were observed, and fibrous crystalline structure was observed from electron micrograph and also found from the microscopic electron diffraction at 5.7 $\AA.$ Therefore the fibrous axis was considered as =Al=O2=Al=O2=Al=(*image) direction. True specific gravity of Dawsonite was 2.44 and its porosity was 91.4%. It was practically insoluble in water, but decomposed in the boiling water to form Pseudo Boehmite. Stable pH range of Dawsonite was about 4.5~11.5. From the results of D.T.A. and T.G.A., it was observed that $CO_2$was liberated at $350^{\circ}C$, and $H_2O$ at $650^{\circ}C$, and converted into strongly hygroscopic $NaAlO_2$, which was easily decomposed in water into $\beta-Al(OH)_3(Bayerite)$ and NaOH.

  • PDF

전이금속염 첨가에 의한 판상 α-Al2O3 결정체 제조 (Preparation of Flaky α-Al2O3 Crystals by Transition Metal Salts Addition)

  • 송효경;박병기;이정민
    • 한국세라믹학회지
    • /
    • 제42권6호
    • /
    • pp.384-390
    • /
    • 2005
  • [ ${\alpha}-Al_2O_3$ ] precursor was synthesised by sol-gel method using aluminum sulfate, sodium sulfate and sodium carbonate as law materials. The flaky ${\alpha}-Al_2O_3$ crystals were prepared by heating using precursor about $1,050^{\circ}C$. In this study, the effect of some transition-metal sulfate ($FeSO_4,\;SnSO_4,\;ZnSO_4$) addition have been investigated. When iron sulfate was added, it could see that act on impurities in crystal growth process. In case of tin sulfate, distribution of Platelets was very broad. When flaky ${\alpha}-Al_2O_3$ crystals were prepared zinc sulfate addition, thickness, size, and distribution of platelets was suited to industrial application. The average diameter of flaky ${\alpha}-Al_2O_3$ crystals was about 20 $\mu$m, and its thickness was about 0.3 $\mu$m. Increasing addition of zinc sulfate, thickness of ${\alpha}-Al_2O_3$ platelet was decreased.

CH3COOH 농도가 수열법으로 제조된 Fe2O3 담지 감마알루미나 촉매의 특성에 미치는 영향 (Effect of CH3COOH Concentration on Characteristics of Fe2O3Supported δ-alumina Catalyst by Hydrothermal Method)

  • 박병기;이정민;서동수
    • 한국세라믹학회지
    • /
    • 제40권8호
    • /
    • pp.758-764
    • /
    • 2003
  • 비정질알루미나와 기공형성제를 물과 혼합하여 원통형으로 성형하고 수화, 건조 및 소성하여 ${\gamma}$-alumina pellets을 제조하였다. 촉매 전구체인 Fe(NO$_3$)$_3$ㆍ9$H_2O$의 농도를 일정하게 하면서 $CH_3$COOH의 농도를 2.5~20% 범위로 변화시킨 혼합용액을 제조하고, 여기에 ${\gamma}$-alumina pellets을 침척하여 $200^{\circ}C$ 온도로 3시간 수열처리 한 다음, 결정의 생성 및 변화, 기공특성, $N_2$ 흡/탈차특성, 산점변화 그리고 기계적 강도 등을 조사하였다. $CH_3$COOH 의 농도에 따라 0.5~2${\mu}m$ 길이의 침상으로 결정이 성장하였고, 결정구조는 의사베마이트 구조를 나타냈다. 10% $CH_3$COOH 용액에서 수열처리 했을 때 100~1000$\AA$사이의 기공부피가 0.86cc/g롤 가장 높았으며, 질소 흡탈착 이력곡선의 폭이 가장 작게 나타났다. $CH_3$COOH 농도가 5~15% 범위일 때 새로운 C-H 관능기가 형성되었고, 촉매의 기계적 강도도는 $CH_3$COOH 농도가 2.5%일 때 1.35MPa로 가장 높았다.

황산알루미늄의 가수분해에 의해 석출된 AlO(OH) 겔의 숙성시간이 판상 α-Al2O3의 결정성장에 미치는 영향 (Effect of Aging Time of AlO(OH) Gel Precipitated by Hydrolysis of Aluminum Sulfate on Crystal Growth of the Flaky α-Al2O3)

  • 최동욱;박병기;서정권;이정민
    • 한국세라믹학회지
    • /
    • 제43권9호
    • /
    • pp.575-581
    • /
    • 2006
  • To precipitate the complex gel of flux and aluminum hydroxides gel, aqueous solution of the mixture of $Na_2CO_3\;and\;Na_2PO_4{\cdot}12H_2O$ was added with stirring in aqueous solution of the mixture of $Al_2(SO_4)_3{\cdot}14{\sim}18H_2O,\;Na_2SO_4$, and then the complex gel was aged in $0{\sim}30h\;at\;90^{\circ}C$. As aging time passed, the aluminum hydroxides was grown into the acicular AlO(OH) gel. Also, aging time had an effect on physical properties of the AlO(OH) gel and on crystal growth of the flaky ${\alpha}-Al_2O_3$ prepared by molten-salt precipitation. In this study, the complex gel was crystallized in temperature range of $400{\sim}1,200^{\circ}C$ after drying at $110^{\circ}C$, and then it was investigated to effect of aging time on precipitation temperature, size, thickness, morphology and particle size distribution of the flaky ${\alpha}-Al_2O_3$ crystal. As aging time passed, the flaky a${\alpha}-Al_2O_3$ crystal showed a tendency toward an increase in size and thickness as result from an increase in BET surface area and pore volume of the acicular AlO(OH) gel.

알루미늄 염으로부터 침전법에 의한 알루미나 분체의 제조 (Preparation of Alumina Powder from Aluminum Salts by Precipitation Method)

  • 이전;최상욱;조동수;이종길;김승태
    • 한국세라믹학회지
    • /
    • 제30권12호
    • /
    • pp.1045-1053
    • /
    • 1993
  • Alumina hydrates were prepared by the neutralization of AlCl3.6H2O solution with NH3 gas diluted with N2 gas. The values of pH in reaction solution influenced the formation of alumina hydrates minerals. Amorphous alumina hydrates, for example, were formed at ${\gamma}$-Al2O3longrightarrow$\delta$-Al2O3longrightarrow$\theta$-Al2O3longrightarrow$\alpha$-Al2O3. (2) Bayeritelongrightarrowamorphouslongrightarrow${\gamma}$-Al2O3longrightarrow$\delta$-Al2O3longrightarrowη-Al2O3longrightarrow$\theta$-Al2O3longrightarrow$\alpha$-Al2O3. On the other hand, the shape of alumina hydrates whichw ere prepared by the reacton of Al2(SO4)3.16H2O solution and NH3 gas was spherical, the progress of its phase transformation with increasing temperature was amorphouslongrightarrow${\gamma}$-Al2O3longrightarrow$\alpha$Al2O3 in sequence.

  • PDF