• Title/Summary/Keyword: Pseudo dynamic test

Search Result 107, Processing Time 0.026 seconds

Seismic performance of RC bridge piers subjected to moderate earthquakes

  • Chung, Young Soo;Park, Chang Kyu;Lee, Dae Hyoung
    • Structural Engineering and Mechanics
    • /
    • v.24 no.4
    • /
    • pp.429-446
    • /
    • 2006
  • Experimental investigation was conducted to evaluate the seismic ductility of earthquake-experienced concrete columns with an aspect ratio of 2.5. Eight circular concrete columns with a diameter of 600 mm were constructed with three test parameters: confinement ratio, lap-splice of longitudinal bars, and retrofitting with Fiber Reinforced Polymer (FRP) materials. The objective of this research is to examine the seismic performance of RC bridge piers subjected to a Quasi static test (QST), which were preliminary tested under a series of artificial earthquake motions referred to as a Pseudo dynamic test (PDT). The seismic enhancement effect of FRP wrap was also investigated on these RC bridge piers. Six specimens were loaded to induce probable damage by four series of artificial earthquakes, which were developed to be compatible with earthquakes in the Korean peninsula by the Korea Highway Corporation (KHC). Directly after the PDT, six earthquake-experienced columns were subjected to inelastic cyclic loading under a constant axial load of $0.1{f_c}^{\prime}A_g$. Two other reference specimens without the PDT were also subjected to similar quasi-static loads. Test results showed that specimens pre-damaged by moderate artificial earthquakes generally demonstrated good residual seismic performance, which was similar to the corresponding reference specimen. Moreover, RC bridge specimens retrofitted with wrapping fiber composites in the potential plastic hinge region exhibited enhanced flexural ductility.

Seismic Performance Analysis of RC Bridge Piers with 3.5 Aspect Ratio depending on Testing Methods (형상비 3.5 RC교각의 실험 방법에 의한 내진성능 분석)

  • Hong, Hyun-Ki;Park, Chang-Young;Chung, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.93-96
    • /
    • 2008
  • This paper deals with the shaking table test(STT), the Quasi-Static Test(QST), and the Pseudo-Dynamic Test(PDT) to evaluate the seismic performance of RC bridge piers under near fault ground motion. Five scaled specimens were constructed the weight of the superstructure was applied through the prestressing strand at the centroid of the column section during the QST and PDT. However, the STT was simulated. The lateral inertia force of the superstructure by the mass frame which was linked with the pier because of the limited payload of shaking table. Particularly for the STT, friction underneath the mass frame was minimized by special details and it was verified by a series of pre-load test. Scale factor of the RC piers was 4.25.

  • PDF

Comparison of Lateral Pile Behavior under Static and Dynamic Loading by Centrifuge Tests (원심모형 실험을 이용한 지반-말뚝 상호작용의 정적 및 동적 거동 평가)

  • Yoo, Min-Taek;Kwon, Sun-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.51-58
    • /
    • 2018
  • In this study a series of centrifuge tests were carried out in dry sand to analyze the comparison of lateral pile behavior for static loading and dynamic loading condition. In case of static loading condition, the lateral displacement was applied up to 50% of pile diameter by deflection control method. And the input sine wave of 0.1 g~0.4 g amplitude and 1 Hz frequency was applied at the base of the soil box using shaking table for dynamic loading condition. From comparison of experimental static p-y curve obtained from static loading tests with API p-y curves, API p-y curves can predict well within 20% error the ultimate subgrade reaction force of static loading condition. The ultimate subgrade reaction force of experimental dynamic p-y curve is 5 times larger than that of API p-y curves and experimental static p-y curves. Therefore, pseudo-static analysis applied to existing p-y curve for seismic design could greatly underestimate the soil resistance at non-linear domain and cause overly conservative design.

A Study of Vibration Analysis Due to Structual Changes of Dynamic Structure (동적 구조물의 구조변화에 의한 진동해석 연구)

  • 현천성;이기형;정인성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2033-2048
    • /
    • 1992
  • This paper presents the theoretical development and qualitative evaluation of a new concept in the mathematical modeling of dynamic structures. We use both test data and analytical approximations to identify the parameters of an incomplete model. The model has the capability of predicting the response of the points of interest on the structure over the frequency range of interest and can be used to predict the changes in natural frequencies and normal modes due to structural changes. The theory was tested by running simulated tests on a relatively simple structure, identifying the parameters of the incomplete model, and using this model to predict the effects on frequency and mode shapes of several mass and stiffness changes. The conditions of the tests were varied by selecting different numbers of points of measurement, varying the frequency range, and by including assumed measurement error. It is recommended that the theoretical development be continued and that applications to more complex structures be carried out in order to develop a better understanding of the limitations and capabilities of the method. A successful, more definitive sevaluation could lead to immediate practical applications.

Distributed Hybrid Simulation and Testing System using General-Purpose Finite Element Analysis Program (범용 유한요소해석 프로그램을 이용한 분산 공유 하이브리드 해석 및 실험 시스템)

  • Yun, Gun-Jin;Han, Bong-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.59-71
    • /
    • 2008
  • In this paper, a software framework that integrates computational and experimental simulation has been developed to simulate and test a large-scale structural system under earthquake loading. The proposed software framework does not need development of the computer codes for both dynamic and static simulations. Any general-purpose software can be utilized with a main control module and interface APIs. This opens up a new opportunity to facilitate use of sophisticated finite elements into hybrid simulation regime to enhance accuracy and efficiency of simulations. The software framework described in the paper is modular and uses object oriented programming concepts. A series of illustrative examples demonstrate that the system is fully-functional and is capable of running any number of experimental and/or analytical components.

A Comparative Study of Transcription Techniques for Nonlinear Optimal Control Problems Using a Pseudo-Spectral Method

  • Kim, Chang-Joo;Sung, Sangkyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.264-277
    • /
    • 2015
  • This article investigates various transcription techniques for the Legendre pseudospectral (PS) method to compare the pros and cons of each approach. Eight combinations from four different types of collocation points and two discretization methods for dynamic constraints, which differentiate Legendre PS transcription techniques, are implemented to solve a carefully selected test set of nonlinear optimal control problems (NOCPs). The convergence property and prediction accuracy are compared to provide a useful guideline for selecting the best combination. The tested NOCPs consist of the minimum time, minimum energy, and problems with state and control constraints. Therefore, the results drawn from this comparative study apply to the solution of similar types of NOCPs and can mitigate much debate about the best combinations. Additionally, important findings from this study can be used to improve the numerical efficiency of the Legendre PS methods. Three PS applications to the aerospace engineering problems are demonstrated to prove this point.

A study of human operator dynamics measurement using pseudo-random binary signals (의사랜덤 신호에 의한 휴먼 오퍼레이터의 동특성 측정)

  • Sang Hui Park
    • 전기의세계
    • /
    • v.20 no.3
    • /
    • pp.8-16
    • /
    • 1971
  • The proper design of man-machine systems requires as much understanding of the human element as of the machine. Although the modern systems engineer can obtain a very high degree of repeatability and accuracy for the characteristics of a machine, these of the human elements are much less well known. Due to the complexity and importance of modern man-machine systems, this difficult problem has recently received increasing attention. In this paper, the dynamic characteristics of the human operator have been newly determined by impulse estimation using Pseuo-random binnary signals as a test signal and the quasi-linear human operator models used as an element of a closed-loop control system adopted from McRuer & Krendel and Bekey. Also the techniques and instruments are presented for correlating the actual characteristics of the constructed system with anticipated theoretical values. Consequently, in spite of many problems remain yet, experimental results were very satisfactory.

  • PDF

Performance validation and application of a mixed force-displacement loading strategy for bi-directional hybrid simulation

  • Wang, Zhen;Tan, Qiyang;Shi, Pengfei;Yang, Ge;Zhu, Siyu;Xu, Guoshan;Wu, Bin;Sun, Jianyun
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.373-390
    • /
    • 2020
  • Hybrid simulation (HS) is a versatile tool for structural performance evaluation under dynamic loads. Although real structural responses are often multiple-directional owing to an eccentric mass/stiffness of the structure and/or excitations not along structural major axes, few HS in this field takes into account structural responses in multiple directions. Multi-directional loading is more challenging than uni-directional loading as there is a nonlinear transformation between actuator and specimen coordinate systems, increasing the difficulty of suppressing loading error. Moreover, redundant actuators may exist in multi-directional hybrid simulations of large-scale structures, which requires the loading strategy to contain ineffective loading of multiple actuators. To address these issues, lately a new strategy was conceived for accurate reproduction of desired displacements in bi-directional hybrid simulations (BHS), which is characterized in two features, i.e., iterative displacement command updating based on the Jacobian matrix considering nonlinear geometric relationships, and force-based control for compensating ineffective forces of redundant actuators. This paper performs performance validation and application of this new mixed loading strategy. In particular, virtual BHS considering linear and nonlinear specimen models, and the diversity of actuator properties were carried out. A validation test was implemented with a steel frame specimen. A real application of this strategy to BHS on a full-scale 2-story frame specimen was performed. Studies showed that this strategy exhibited excellent tracking performance for the measured displacements of the control point and remarkable compensation for ineffective forces of the redundant actuator. This strategy was demonstrated to be capable of accurately and effectively reproducing the desired displacements in large-scale BHS.

Development of Modified Flexibility Ratio - Racking Ratio Relationship of Box Tunnels Subjected to Earthquake Loading Considering Rocking

  • Duhee Park;Van-Quang Nguyen;Gyuphil Lee;Youngsuk Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.2
    • /
    • pp.13-24
    • /
    • 2023
  • Tunnels may undergo a larger or a smaller response compared with the free-field soil. In the pseudo-static procedure, the response of the tunnel is most often characterized by a curve that relates the racking ratio (R) with the flexibility ratio (F), where R represents the ratio of the tunnel response with respect to the free-field vibration and F is the relative stiffness of the tunnel and the surrounding soil. A set of analytical and empirical curves that do not account for the depth and the aspect ratio of the tunnel are typically used in practice. In this study, a series of dynamic analyses are conducted to develop a set of F-Rm relations for use in a frame analysis method. Rm is defined as an adjusted R where the rocking mode of deformation is removed and only the racking deformation is extracted. The numerical model is validated against centrifuge test recordings. The influence of aspect ratio, buried depth of tunnel on results is investigated. The results show that Rm increases with the increase of the buried depth and the aspect ratio. The widely used F-R relations are highlighted to be different compared with the obtained results in this study. Therefore, the updated F-Rm relations with proposed equations are recommended to be used in practice design. The rocking response decreases with either the decrease of the difference of stiffness between surrounding soil and tunnel or the larger aspect ratio of the tunnel section.

Analysis System for Practical Dynamic Load with Hybrid Method under Random Frequency Vibration (불규칙 가진시 하이브리드기법을 이용한 실동하중 해석시스템)

  • Song, Joon-Hyuk;Yang, Sung-Mo;Kang, Hee-Yong;Yu, Hyo-Sun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.33-38
    • /
    • 2008
  • Most structures of vehicle are composed of many substructures connected to one another by various types of mechanical joints. In vehicle engineering, it is important to study these jointed structures under random frequency vibration for the evaluations of fatigue life and stress concentration exactly. It is rarely obtained the accurate load history of specified positions in a jointed structure because of the errors such as modeling, measurement, and etc. In the beginning of design, exact load data are actually necessary for the fatigue strength and life analysis to minimize the cost and time of designing. In this paper, the hybrid method of practical dynamic load determination is developed by the combination of the principal stresses from F. E. Analysis and test of a jointed structure. Least square pseudo inverse matrix is adopted to obtain an inverse matrix of analyzed stresses matrix. The error minimization method utilizes the inaccurate measured error and the shifting error that the whole data is stiffed over real data. The least square criterion is adopted to avoid these errors. Finally, to verify the proposed system, a heavy-duty bus is analyzed. This measurement and prediction technology can be extended to the different jointed structures.