• Title/Summary/Keyword: Pseudo Inverse

Search Result 132, Processing Time 0.017 seconds

Performance Analysis of GPS and QZSS Orbit Determination using Pseudo Ranges and Precise Dynamic Model (의사거리 관측값과 정밀동역학모델을 이용한 GPS와 QZSS 궤도결정 성능 분석)

  • Beomsoo Kim;Jeongrae Kim;Sungchun Bu;Chulsoo Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.404-411
    • /
    • 2022
  • The main function in operating the satellite navigation system is to accurately determine the orbit of the navigation satellite and transmit it as a navigation message. In this study, we developed software to determine the orbit of a navigation satellite by combining an extended Kalman filter and an accurate dynamic model. Global positioning system (GPS) and quasi-zenith satellite system (QZSS) orbit determination was performed using international gnss system (IGS) ground station observations and user range error (URE), a key performance indicator of the navigation system, was calculated by comparison with IGS precise ephemeris. When estimating the clock error mounted on the navigation satellite, the radial orbital error and the clock error have a high inverse correlation, which cancel each other out, and the standard deviations of the URE of GPS and QZSS are small namely 1.99 m and 3.47 m, respectively. Instead of estimating the clock error of the navigation satellite, the orbit was determined by replacing the clock error of the navigation message with a modeled value, and the regional correlation with URE and the effect of the ground station arrangement were analyzed.

Least-Square Fitting of Intrinsic and Scattering Q Parameters (최소자승법(最小自乘法)에 의(衣)한 고유(固有) Q와 산란(散亂) Q의 측정(測定))

  • Kang, Ik Bum;McMechan, George A.;Min, Kyung Duck
    • Economic and Environmental Geology
    • /
    • v.27 no.6
    • /
    • pp.557-561
    • /
    • 1994
  • Q estimates are made by direct measurements of energy loss per cycle from primary P and S waves, as a function of frequency. Assuming that intrinsic Q is frequency independent and scattering Q is frequency dependent over the frequencies of interest, the relative contributions of each, to a total observed Q, may be estimated. Test examples are produced by computing viscoelastic synthetic seismograms using a pseudo spectral solution with inclusion of relaxation mechanisms (for intrinsic Q) and a fractal distribution of scatterers (for scattering Q). The composite theory implies that when the total Q for S-waves is smaller than that for P-waves (the usual situation), intrinsic Q is dominating; when it is larger, scattering Q is dominating. In the inverse problem, performed by a global least squares search, intrinsic $Q_p$ and $Q_s$ estimates are reliable and unique when their absolute values are sufficiently low that their effects are measurable in the data. Large $Q_p$ and $Q_s$ have no measurable effect and hence are not resolvable. Standard deviation of velocity $({\sigma})$ and scatterer size (A) are less unique as they exhibit a tradeoff as predicted by Blair's equation. For the P-waves, intrinsic and scattering contributions are of approximately the same importance, for S-waves, the intrinsic contributions dominate.

  • PDF