• 제목/요약/키워드: Pseudo 3D finite element method

검색결과 3건 처리시간 0.02초

A PRIORI L2 ERROR ANALYSIS FOR AN EXPANDED MIXED FINITE ELEMENT METHOD FOR QUASILINEAR PSEUDO-PARABOLIC EQUATIONS

  • Ohm, Mi Ray;Lee, Hyun Young;Shin, Jun Yong
    • 대한수학회지
    • /
    • 제51권1호
    • /
    • pp.67-86
    • /
    • 2014
  • Based on an expanded mixed finite element method, we consider the semidiscrete approximations of the solution u of the quasilinear pseudo-parabolic equation defined on ${\Omega}{\subset}R^d$, $1{\leq}d{\leq}3$. We construct the semidiscrete approximations of ${\nabla}u$ and $a(u){\nabla}u+b(u){\nabla}u_t$ as well as u and prove the existence of the semidiscrete approximations. And also we prove the optimal convergence of ${\nabla}u$ and $a(u){\nabla}u+b(u){\nabla}u_t$ as well as u in $L^2$ normed space.

중진지역 건축물의 묻힌온통기초에 작용하는 토압과 말 뚝변위에 대한 지진해석 (Seismic Analyses of Soil Pressure against Embedded Mat Foundation and Pile Displacements for a Building in Moderate Seismic Area)

  • 김용석
    • 한국지진공학회논문집
    • /
    • 제21권1호
    • /
    • pp.69-76
    • /
    • 2017
  • Seismic analyses of a pile under a large rigid basement foundation embedded in the homogeneous soil layer were performed practically by a response displacement method assuming a sinusoidal wave form. However, it is hard to take into account the characteristics of a large mat foundation and a heterogeneous soil layer with the response displacement method. The response displacement method is relevant to the 2D problems for longitudinal structures such as tunnel, underground cave structure, etc., but might not be relevant with isolated foundations for building structures. In this study, seismic pile analysis by a pseudo 3D finite element method was carried out to compare numerical results with results of the response displacement method considering 3D characteristics of a foundation-soil system which is important for the building foundation analyses. Study results show that seismic analyses results of a response displacement method are similar to those of a pseudo 3D numerical method for stiff and dense soil layers, but they are too conservative for a soft soil layer inducing large soil pressures on the foundation wall and large pile displacements due to ignored foundation rigidity and resistance.

Buffeting response of long suspension bridges to skew winds

  • Xu, Y.L.;Zhu, L.D.;Xiang, H.F.
    • Wind and Structures
    • /
    • 제6권3호
    • /
    • pp.179-196
    • /
    • 2003
  • A long suspension bridge is often located within a unique wind environment, and strong winds at the site seldom attack the bridge at a right angle to its long axis. This paper thus investigates the buffeting response of long suspension bridges to skew winds. The conventional buffeting analysis in the frequency domain is first improved to take into account skew winds based on the quasi-steady theory and the oblique strip theory in conjunction with the finite element method and the pseudo-excitation method. The aerodynamic coefficients and flutter derivatives of the Tsing Ma suspension bridge deck under skew winds, which are required in the improved buffeting analysis, are then measured in a wind tunnel using specially designed test rigs. The field measurement data, which were recorded during Typhoon Sam in 1999 by the Wind And Structural Health Monitoring System (WASHMS) installed on the Tsing Ma Bridge, are analyzed to obtain both wind characteristics and buffeting responses. Finally, the field measured buffeting responses of the Tsing Ma Bridge are compared with those from the computer simulation using the improved method and the aerodynamic coefficients and flutter derivatives measured under skew winds. The comparison is found satisfactory in general.