• Title/Summary/Keyword: PrxI

Search Result 20, Processing Time 0.023 seconds

Molecular cloning and characterization of peroxiredoxin from Toxoplasma gondii

  • Son, Eui-Sun;Song, Kyoung-Ju;Shin, Jong-Chul;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.39 no.2
    • /
    • pp.133-141
    • /
    • 2001
  • A cDNA of 1.1 kb comprising the gene encoding the peroxiredoxin of Toxo-plasma gondii(TgPrx) has been cloned. The open reading frame of 591 Up was translated into a protein of 196 amino acids with a molecular mass of 25 kDa. Conserved 2 cysteine domains of Phe-Val-Cys-Pro and Glu-Val-Cys-Pro indicated TgPrx belonged to 2-Cys Prx families. TgPrx showed the highest homology with that of Arabidopsis thaliana by 53.9% followed by Entamoeba histolytica with 39.5% by the amino acid sequence alignment. Polyclonal antibody against recombinant TgPrx detected 25 kDa band in T. gondii without binding to host cell proteins TgPrx was located in the cytoplasm of T. gondii extracellularly or intracellularly by immunofluorescence assay. The expression of TgPrx was increased as early as 30 min after the treatment with artemisinin in the intracellular stage, while no changes in those of host Prx I and TgSOD. This result implies that TgPrx may function as an antioxidant protecting the cell from the attack of reactive oxygen intermediates. It is also suggested that TgPrx is a possible target of chemotherapy.

  • PDF

Mechanism of Stress-dependent Structural Change of Yeast Prx (Yeast Prx의 스트레스의존 구조적 변화의 기작)

  • Kang, Ji-Seoun;Cheong, Gang-Won
    • Applied Microscopy
    • /
    • v.35 no.4
    • /
    • pp.16-23
    • /
    • 2005
  • Peroxiredoxins (Prxs) are a superfamily of thiol-specific antioxidant proteins present in all organism and involved in the hydroperoxide detoxification of the cell. To determine the structural organization of yeast-Prx, electron microscopic analysis was performed. The average images of yeast-Prxs revealed three different structure, i.e. spherical-shaped structure, ring-shaped structure and irregularly-shaped small particles. In order to analyze the conformational change of yeast-Prx by reduction and oxidation, Prxs were subjected to DTT and $H_2O_2$. In presence of DTT, yeast-Prx showed a high tendency to form a decamer. However, they changed into dimeric or spherical structure in the oxidized state. Here we also show ionic interaction between dimeric subunits is primarily responsible for yeast-Prx oligomerization.

Characterization of Peroxiredoxins in the Gray matter in the spinal cord after Acute Immobilization Stress (급성 부동 스트레스 후 척수 회색질에서 Peroxiredoxin I 및 III의 발현 변화)

  • Paek, Nam-Hyun;Kwak, Seung-Soo;Lee, Dong-Seok;Lee, Young-Ho
    • Journal of Trauma and Injury
    • /
    • v.19 no.2
    • /
    • pp.105-112
    • /
    • 2006
  • Purpose: Many stresses produce reactive oxygen species and bring about mechanism of antioxidant reaction. Cytokine and a neurotransmitter through the cell membrane, as well as signal transduction through the cell membrane, are used for various pathological condition of the brain, such as neurodegenerative disease. There are several antioxidant enzymes in cells (superoxcide dismutase, glutathion peroxidasae, peroxiredoxin catalase, etc.) Methods: This study used single- or double-label immunohistochemical techniques to analyze mouse spinal neuron cells expressing Prx I and Prx III after acute mobilization stress. Results: Prx I was observed in dendritic cell of the gray matter of the spinal cord, and Prx III was observed in the cytoplasm of the GM of the spinal cord. Conclusion: The results of this study will help to explain differences of expression in the distributions of the peroxiredoxin enzymes of the spinal cord.

Isolation, Restriction Mapping, and Promoter Sequence Analysis of an Isoperoxidase Gene from Korean-Radish, Raphanus sativus L.

  • Park, Jong-Hoon;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.29 no.1
    • /
    • pp.52-57
    • /
    • 1996
  • A specific DNA fragment from Korean radish (Raphanus sativus L.) was amplified by performing PCR with oligonucleotide primers which correspond to the highly conserved regions of plant peroxidases. The size of the PCR product was ca. 400 bp, as expected from the known plant peroxidase genes. Comparison of the nucleotide and deduced amino acid sequences of the PCR product to those of other plant peroxidase-encoding genes revealed that the amplified fragment corresponded to the highly conserved region I and III of plant peroxidases. By screening a genomic library of Korean radish using the amplified fragment as a probe, two positive clones, named prxK1 and prxK2, were isolated. Restriction mapping studies indicated that the 5.2 kb Sail fragment of the prxK1 clone and the 4.0 kb EcoRI fragment of the prxK2 clone encode separate isoperoxidase genes. Analyses of the promoter region of the prxK1 clone shows that putative CAAT box, CMT box, and TGA1b binding sequence (5' TGACGT) are present 718 bp upstream from the start codon.

  • PDF

Molecular identification and expression analysis of a natural killer enhancing factor-A from black rockfish Sebastes schlegelii

  • Lee, Jeong-Ho;Kim, Joo-Won;Park, Chan-Il
    • Journal of fish pathology
    • /
    • v.22 no.3
    • /
    • pp.343-352
    • /
    • 2009
  • Natural-killer-cell-enhancing factor (NKEF) belongs to the newly defined peroxiredoxin (Prx) family. It was originally isolated from human erythroid cells. The black rockfish NKEF cDNA was identified through the expressed sequence tag (EST) analysis of PBLs libraries. The full-length NKEF cDNA was 1433 bp long and contained an open reading frame (ORF) of 594 bp that encoded 198 amino-acid residues. The 5' UTR had a length of 39 bp, and the 3’UTR 800 bp. The deduced amino-acid sequence of the black rockfish had a density 93.4, 92.9, 87.8, 85.8, 84.8, 83.8, 80.3, 79.7, 77.2, and 75.2% that of the pufferfish, olive flounder, channel catfish, zebrafish, chicken, common carp, Myotis lucifugus, cattle, human PrxI, rat PrxI, human NKEF-A, and Xenopus tropicalis, respectively. The NKEF gene was expressed in all the tissues of the black rockfish. The RT-PCR indicated that the NKEF transcripts were predominantly in the spleen and gill, less dominantly in the PBLs, head kidney, trunk kidney, and liver, and least in the intestine and muscles. This is the first report on the existence of the NKEF-A gene in black rockfish.

Expression Profiles of Prx I, II and III in Murine Reproductive System

  • Han, Y.H.;Wang, A.G.;Lee, T.H.;Kim, S.U.;Kim, S.K.;Yu, D.Y.
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.67-67
    • /
    • 2002
  • The imbalance between reactive oxygen species(ROS) production and total antioxidant capacity reproduction system is correlated with infertility. Therefore, this study was designed to investigate the expression patterns of peroxiredoxin(Prx), a member of antioxidant family, in reproductive system that includes testis, epididymis ovary, oviduct, and uterus. (omitted)

  • PDF

Functional switching of eukaryotic 2-Cys peroxiredoxins from peroxidases to molecular chaperones in response to oxidative stress

  • Jang, Ho-Hee;Lee, Sang-Yeol
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.40-64
    • /
    • 2005
  • Much biochemical information on peroxiredoxins (Prxs) has been reported but a genuine physiological function for these proteins has not been established. We show here that two cytosolic yeast Prxs, cPrxI and II, exist in a variety of forms that differ in their structure and molecular weight (MW) and that they can act both as a peroxidase and as a molecular chaperone. The peroxidase function predominates in the lower MW proteins, whereas the chaperone function is more significant in the higher MW complexes. Oxidative stress and heat shock exposure of yeasts causesthe protein structures of cPrxI and II to shift from low MW species to high MW complexes. This triggers a peroxidase-to-chaperone functional switch. These in vivo changes are primarily guided by the active peroxidase site residue, $Cys^{47}$, which serves as an efficient $'H_2O_2-sensor'$ in the cells. The chaperone function of the proteins enhances yeast resistance to heat shock.

  • PDF

Factors Affecting the Productivity of Germ-line Chimeras from Jl Embryonic Stem Cells (Jl 배아주세포를 이용한 효율적인 생식선 이행 카이미라의 생산)

  • Kim, S.U.;Koo, B.S.;Jeong, S.;Lee, T.H.;Yu, S.L.;Nam, Y.I.;Kim, J.L.;Hyun, B.H.;Shin, H.S.;Lee, K.K.;Sang, B.C.;Yu, D.Y.
    • Korean Journal of Animal Reproduction
    • /
    • v.25 no.1
    • /
    • pp.71-77
    • /
    • 2001
  • This experiment was designed to improve the production efficiency of germ-line chimeric mice from phospholipase C (PLC)-$\beta$3 or peroxiredoxin (Prx) E -targeted ($\Delta$) ES cells by the investigating the manipulation conditions and characteristics of Jl ES cells. Four targeting clones were isolated to investigate the karyotypical and morphological stability prior to injection. All clones ($\Delta$PLC$\beta$-3 C3, $\Delta$Prx II C3, C10 and I5) showed more than 80% euploidism, however, most of $\Delta$PLC$\beta$-3 C3 clones were extensively differentiated compared to the other clones. Nine of 13 $\Delta$Prx II chimeras appeared to have at least 80% chimerism, whereas $\Delta$PLC$\beta$-3 C3 chimeras had 20% chimerism at most. Therefore, the morphological stability of ES cells under stable euploidism might mainly affect the production rate of high-coat chimeric mice. To increase the collection rate of injectable blastocysts (IBs), 5 to 10 week -aged C57BL/6J female mice were sacrificed at 3.5 days post-coitum. Ten week-aged mice were the most optimal IB donors by showing the highest collection rate (2.94/mouse) of injectable blastocysts without increase of non-injectable embryos (0.29/mouse). Foster mothers might be another factor because ICR x C57BL/6J F1 foster mother showed more increased productivity in litter size (2.8 vs. 5.6) and chimera (0 vs. 35.3%) than those of ICR foster mothers. In conclusion, the efficient production of germ-line chimeras mainly depends on the maintenance of ES cell morphology during targeting procedure, and the establishment of manipulation conditions might be a key point to maximize it.

  • PDF

Proteomic Profiles of Mouse Neuro N2a Cells Infected with Variant Virulence f Rabies Viruses

  • Wang, Xiaohu;Zhang, Shoufeng;Sun, Chenglong;Yuan, Zi-Guo;Wu, Xianfu;Wang, Dongxia;Ding, Zhuang;Hu, Rongliang
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.366-373
    • /
    • 2011
  • We characterized the proteomes of murine N2a cells following infection with three rabies virus (RV) strains, characterized by distinct virulence phenotypes (i.e., virulent BD06, fixed CVS-11, and attenuated SRV9 strains), and identified 35 changes to protein expression using two-dimensional gel electrophoresis in whole-cell lysates. The annotated functions of these proteins are involved in various cytoskeletal, signal transduction, stress response, and metabolic processes. Specifically, a-enolase, prx-4, vimentin, cytokine-induced apoptosis inhibitor 1 (CIAPIN1) and prx-6 were significantly up-regulated, whereas Trx like-1 and galectin-1 were down-regulated following infection of N2a cells with all three rabies virus strains. However, comparing expressions of all 35 proteins affected between BD06-, CVS-11-, and SRV9-infected cells, specific changes in expression were also observed. The up-regulation of vimentin, CIAPIN1, prx-4, and 14-3-3 ${\theta}/{\delta}$, and down-regulation of NDPK-B and HSP-1 with CVS and SRV9 infection were ${\geq}2$ times greater than with BD06. Meanwhile, Zfp12 protein, splicing factor, and arginine/serine-rich 1 were unaltered in the cells infected with BD06 and CVS-11, but were up-regulated in the group infected with SRV9. The proteomic alterations described here may suggest that these changes to protein expression correlate with the rabies virus' adaptability and virulence in N2a cells, and hence provides new clues as to the response of N2a host cells to rabies virus infections, and may also aid in uncovering new pathways in these cells that are involved in rabies infections. Further characterization of the functions of the affected proteins may contribute to our understanding of the mechanisms of RV infection and pathogenesis.

Oxidative Inactivation of Peroxiredoxin Isoforms by H2O2 in Pulmonary Epithelial, Macrophage, and other Cell Lines with their Subsequent Regeneration (폐포상피세포, 대식세포를 비롯한 각종 세포주에서 H2O2에 의한 Peroxiredoxin 동위효소들의 산화에 따른 불활성화와 재생)

  • Oh, Yoon Jung;Kim, Young Sun;Choi, Young In;Shin, Seung Soo;Park, Joo Hun;Choi, Young Hwa;Park, Kwang Joo;Park, Rae Woong;Hwang, Sung Chul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.1
    • /
    • pp.31-42
    • /
    • 2005
  • Background : Peroxiredoxins (Prxs) are a relatively newly recognized, novel family of peroxidases that reduce $H_2O_2$ and alkylhydroperoxide into water and alcohol, respectively. There are 6 known isoforms of Prxs present in human cells. Normally, Prxs exist in a head-to-tail homodimeric state in a reduced form. However, in the presence of excess $H_2O_2$, it can be oxidized on its catalytically active cysteine site into inactive oxidized forms. This study surveyed the types of the Prx isoforms present in the pulmonary epithelial, macrophage, endothelial, and other cell lines and observed their response to oxidative stress. Methods : This study examined the effect of exogenous, excess $H_2O_2$ on the Prxs of established cell lines originating from the pulmonary epithelium, macrophages, and other cell lines, which are known to be exposed to high oxygen partial pressures or are believed to be subject to frequent oxidative stress, using non-reducing SDS polyacrylamide electrophoresis (PAGE) and 2 dimensional electrophoresis. Result : The addition of excess $H_2O_2$ to the culture media of the various cell-lines caused the immediate inactivation of Prxs, as evidenced by their inability to form dimers by a disulfide cross linkage. This was detected as a subsequent shift to its monomeric forms on the non-reducing SDS PAGE. These findings were further confirmed by 2 dimensional electrophoresis and immunoblot analysis by a shift toward a more acidic isoelectric point (pI). However, the subsequent reappearance of the dimeric Prxs with a comparable, corresponding decrease in the monomeric bands was noted on the non-reducing SDS PAGE as early as 30 minutes after the $H_2O_2$ treatment suggesting regeneration after oxidation. The regenerated dimers can again be converted to the inactivated form by a repeated $H_2O_2$ treatment, indicating that the protein is still catalytically active. The recovery of Prxs to the original dimeric state was not inhibited by a pre-treatment with cycloheximide, nor by a pretreatment with inhibitors of protein synthesis, which suggests that the reappearance of dimers occurs via a regeneration process rather than via the de novo synthesis of the active protein. Conclusion : The cells, in general, appeared to be equipped with an established system for regenerating inactivated Prxs, and this system may function as a molecular "on-off switch" in various oxidative signal transduction processes. The same mechanisms might applicable other proteins associated with signal transduction where the active catalytic site cysteines exist.