• Title/Summary/Keyword: Proxy MIPv4

Search Result 4, Processing Time 0.015 seconds

Analytical Approach of Proxy-LMA Mobility System in Heterogeneous IP-based Mobile Networks

  • Cho, Chulhee;Choi, Jae-Young;Jeong, Jongpil
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.71-87
    • /
    • 2015
  • Mobile users want to be provided with undisrupted network services when they navigate on the Next-Generation (NG) wireless networks. For that, interlocking with a heterogeneous network is important, but there have been few studies on the method for guaranteeing global mobility. Thus, this paper proposes the Proxy-LMA technique, the mobile IP-based global inter-networking system, to enhance global mobility and interoperability within the Next-Generation (NG) network environment. The purpose of the proposed Proxy-LMA system is to expand the boundary of the mobility with regards to the existing mobility management protocol (PMIPv6 and MIPv6) in order to guarantee global mobility and interoperability within the heterogeneous network environment. The results of the performance evaluation showed that the proposed Proxy-LMA system was more efficient than other methods from the standpoint of signaling cost and delay in the heterogeneous network environment.

The Mechanism of Proxy Mobile IPv4 to Minimize the Latency of Handover Using MIH Services (MIH 서비스를 활용한 Proxy Mobile IPv4의 핸드오버 지연 최소화 방안)

  • Kim, Sung-Jin;You, Heung-Ryeol;Rhee, Seuck-Ho
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.211-217
    • /
    • 2008
  • Recently, there are many efforts to support seamless mobility in 802.11 WLANs using IP Layer mobility protocols. The IP layer mobility protocols are the most efficient mechanism to guarantee the service session continuity when IP subnet is changed during handover. Even if the IP layer mobility protocols are quite efficient, the feature of the protocols that had been designed to consider only L3 layer makes it difficult to improve the performance of hand over more and more. Nowadays, to overcome this limitation of IP mobility protocols, many researchers have worked on the mobility protocols integration of different layers (e.g., L2 layer). In this paper, we propose the enhanced Proxy MIPv4 to minimize the latency of handover using MIH protocol in 802.11 WLANs. The proposed mechanism minimizes the latency of authentication by exchanging security keys between Access Routers during handover. Moreover, it also minimizes packet losses by Inter-AP Tunneling and data forwarding.

  • PDF

Design of Fast Handover Mechanism in Proxy Mobile IPv6 Networks (Proxy Mobile IPv6 네트워크에서 Fast Handover 기법 설계)

  • Park, Byung-Joo;Han, Youn-Hee;Kim, Bong-Ki
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.4
    • /
    • pp.301-310
    • /
    • 2008
  • In the existing literature, the handover process reveals numerous problems manifested by high movement detection latency. FMIPv6 can reduce packet loss using a tunnel-based handover mechanism. However, this mechanism may cause performance degradation due to the out-of-sequence packets. Recently. Proxy Mobile IPv6 is proposed for network-based mobility management to reduce overhead in mobile node. PMIPv6 can decrease handover latency which related overhead in MN by using network agent. In this paper, we proposed optimized fast handover scheme called Fast Proxy Mobile IPv6 (EF-PMIPv6). The proposed EF-PMIPv6 can support fast handover using fast IAPP and ND schemes. Further, a mathematical analysis is provided to show the benefits of our scheme. In the analysis, various parameters are used to compare our scheme with the current procedures, while our approach focuses on the reduction of handover latency.

Performance Analysis of A Novel Inter-Networking Architecture for Cost-Effective Mobility Management Support

  • Song, Myungseok;Jeong, Jongpil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1344-1367
    • /
    • 2014
  • Mobile traffic is increasing a masse because of the propagation of the Internet and the development of wireless mobile technology. Accordingly, the Network Local Mobility Management (NETLMM) working group [1] of the Internet Engineering Task Force (IETF) has standardized Proxy Mobile IPv6 (PMIPv6) [2] as a protocol for accomplishing the transmissibility of mobile terminals. PMIPv6 is a network-led IP-based mobility management protocol, which can control terminal mobility without depending on the type of access system or the capability of the terminal. By combining PMIPv6 and the mobility of Session Initiation Protocol (SIP), we can establish terminal mobility and session mobility through a more effective route. The mobility function can be improved and the overlap of function reduced as compared to that in the case of independent operation. PMIPv6 is appropriate for a non-real-time service using TCP, and SIP is appropriate for a real-time service using RTP/UDP. Thus, in the case of a terminal using both services, an effective mobility management is possible only by using PMIPv6 together with SIP. In order to manage mobility in this manner, researches on PMIPv6-SIP are in progress. In line with this trend, this paper suggests a new PMIPv6-SIP architecture where when a mobile terminal conducts a handover, a network-led handover while maintaining the session without the addition of a special function or middleware is possible along with effective performance evaluation through mathematical modeling by comparing the delay and the packet loss that occur during the handover to the Pure-SIP.