• Title/Summary/Keyword: Protopanaxadiol ginsenosides

Search Result 120, Processing Time 0.02 seconds

Changes in the Functional Components of Lactobacillus acidophilus-Fermented Red Ginseng Extract and Its Application to Fresh Cheese Production (Lactobacillus acidophilus로 발효한 홍삼 농축액의 기능성 성분 변화 및 이를 이용한 신선치즈 제조)

  • Park, Jong-Hyuk;Moon, Hye-Jung;Oh, Jeon-Hui;Lee, Joo-Hee;Jung, Hoo-Kil;Choi, Kyung-Min;Cha, Jeong-Dan;Lim, Ji-Ye;Han, Su-Beom;Lee, Tae-Bum;Lee, Min-Jung;Choi, Hye-Ran
    • Journal of Dairy Science and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.47-53
    • /
    • 2014
  • In this study, our aim was to investigate the changes in ginsenosides and polyphenols in red ginseng extract fermented by Lactobacillus acidophilus and to manufacture fresh cheese using fermented red ginseng extract. Red ginseng extract (3%, w/v) was fermented by L. acidophilus for 24 h. On performing lactic acid bacteria counts, we determined that L. acidophilus reached its maximum growth phase after 16 h; this was followed by decrease in growth. During fermentation, the levels of ginsenosides Rg3 (20S) and Rg3 (20R) as well as protopanaxadiol (20R), F1, and compound K increased, while those of s Rb2, Rd, Rf, and Rg1 decreased. The pH, titratable acidity, and viable cell counts in fresh cheese prepared using fermented red ginseng extract were measured during the storage period. The pH decreased over time, while titratable acidity and viable cell counts increased with increase in the duration of the storage period. Sensory tests showed that the overall sensory properties of fresh cheese prepared using 1% fermented red ginseng extract were similar to those of the control groups. This result suggests that L. acidophilus-fermented red ginseng has potential for development as a new bioactive material.

  • PDF

Analysis of Ginsenosides of White and Red Ginseng Concentrates (백삼 및 홍삼 농축액의 사포닌 분석)

  • Ko, Sung-Kwon;Lee, Chung-Ryul;Choi, Yong-Eui;Im, Byung-Ok;Sung, Jong-Hwan;Yoon, Kwang-Ro
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.536-539
    • /
    • 2003
  • Commercial white and red ginseng concentrates were analysed for total ginsenoside contents, and compositions of ginsenosides $Rb_1,\;Rb_2,\;Rc,\;Re,\;Rf,\;Rg_1,\;20(S)\;Rg_3,\;20(S)\;Rh_1,\;and\;20(R)\;Rh_1$. The content of crude saponin and total ginsenosides of white ginseng concentrates (WGC) were about 2-3 times higher than those of red ginseng concentrates (RGC). HPLC showed that each ginsenoside content was higher in WGC, with those of $Rb_1,\;Rg_1,\;and\;Rb_2$ being over three times higher than that of RGC. 20(S)- and 20(R)-ginsenoside $Rg_3$, specific artifacts found only in red ginseng, were detected both in WGC and RGC by HPLC. differences in the contents of these specific ginsenosides between WGC and RGC were not significant. The contents of 20(S)-ginsenoside $Rg_1$, determined by HPLC were 0.40 and 0.53 in WGC, whereas 0.48% and 0.47%, and those of 20(R)-ginsenoside $Rg_3$, were 0.14 and 0.22% in WGC, and 0.10 and 0.11% in RGC using the methods of shibata and food Code, respectively.

Effects of Ginsenoside Metabolites on GABAA Receptor-Mediated Ion Currents

  • Lee, Byung-Hwan;Choi, Sun-Hye;Shin, Tae-Joon;Hwang, Sung-Hee;Kang, Ji-Yeon;Kim, Hyeon-Joong;Kim, Byung-Ju;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.55-60
    • /
    • 2012
  • In a previous report, we demonstrated that ginsenoside Rc, one of major ginsenosides from Panax ginseng, enhances ${\gamma}$-aminobutyric acid (GABA) $receptor_A$ ($GABA_A$)-mediated ion channel currents. However, little is known about the effects of ginsenoside metabolites on $GABA_A$ receptor channel activity. The present study investigated the effects of ginsenoside metabolites on human recombinant $GABA_A$ receptor (${\alpha}_1{\beta}_1{\gamma}_{2s}$) channel activity expressed in Xenopus oocytes using a two-electrode voltage clamp technique. M4, a metabolite of protopanaxatriol ginsenosides, more potently inhibited the GABA-induced inward peak current ($I_{GABA}$) than protopanaxadiol (PPD), a metabolite of PPD ginsenosides. The effect of M4 and PPD on $I_{GABA}$ was both concentration-dependent and reversible. The half-inhibitory concentration ($IC_{50}$) values of M4 and PPD were 17.1${\pm}$2.2 and 23.1${\pm}$8.6 ${\mu}M$, respectively. The inhibition of $I_{GABA}$ by M4 and PPD was voltage-independent and non-competitive. This study implies that the regulation of $GABA_A$ receptor channel activity by ginsenoside metabolites differs from that of ginsenosides.

Effects of Protopanaxatriol-Ginsenoside Metabolites on Rat $N$-Methyl-D-Aspartic Acid Receptor-Mediated Ion Currents

  • Shin, Tae-Joon;Hwang, Sung-Hee;Choi, Sun-Hye;Lee, Byung-Hwan;Kang, Ji-Yeon;Kim, Hyeon-Joong;Zukin, R. Suzanne;Rhim, Hye-Whon;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.2
    • /
    • pp.113-118
    • /
    • 2012
  • Ginsenosides are low molecular weight glycosides found in ginseng that exhibit neuroprotective effects through inhibition of $N$-methyl-D-aspartic acid (NMDA) receptor channel activity. Ginsenosides, like other natural compounds, are metabolized by gastric juices and intestinal microorganisms to produce ginsenoside metabolites. However, little is known about how ginsenoside metabolites regulate NMDA receptor channel activity. In the present study, we investigated the effects of ginsenoside metabolites, such as compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT), on oocytes that heterologously express the rat NMDA receptor. NMDA receptor-mediated ion current ($I_{NMDA}$) was measured using the 2-electrode voltage clamp technique. In oocytes injected with cRNAs encoding NMDA receptor subunits, PPT, but not CK or PPD, reversibly inhibited $I_{NMDA}$ in a concentration-dependent manner. The $IC_{50}$ for PPT on $I_{NMDA}$ was $48.1{\pm}4.6\;{\mu}M$, was non-competitive with NMDA, and was independent of the membrane holding potential. These results demonstrate the possibility that PPT interacts with the NMDA receptor, although not at the NMDA binding site, and that the inhibitory effects of PPT on $I_{NMDA}$ could be related to ginseng-mediated neuroprotection.

Effect of Ethanol Concentration on Saponin Composition of Red Ginseng Extract (추출용매(抽出溶媒) 에탄올의 농도(濃度)가 홍삼(紅蔘)엑기스의 사포닌조성(組成)에 미치는 영향)

  • Sung, Hyun-Soon;Yang, Cha-Bum
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.227-231
    • /
    • 1985
  • The effect of ethanol concentration on saponin composition of red ginseng extract was studied during extraction at $80^{\circ}C$ for 5 times of 8 hours. The increase in ethanol concentration from 0% to 90% resulted a gradual reduction in solids yield and an increase in the recovery of total ginsenosides. All of the ginsenosides determined were also significantly increased, but ginsenoside-$Rb_1.$-$Rb_2$ and -Rd were relatively decreased a little by raising the concentration 70% to 90%. The yield ratio of protopanaxadiol/protopanaxatriol saponin were in the range of 1.69${\sim}$1.95. No significant improvement in pure saponin yield was observed between 70% and 90% ethanol. Extraction with 70% ethanol was suggested for preparation of red ginseng extract from the result of this work.

  • PDF

Photosynthesis rates, growth, and ginsenoside contents of 2-yr-old Panax ginseng grown at different light transmission rates in a greenhouse

  • Jang, In-Bae;Lee, Dae-Young;Yu, Jin;Park, Hong-Woo;Mo, Hwang-Sung;Park, Kee-Choon;Hyun, Dong-Yun;Lee, Eung-Ho;Kim, Kee-Hong;Oh, Chang-Sik
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.345-353
    • /
    • 2015
  • Background: Ginseng is a semishade perennial plant cultivated in sloping, sun-shaded areas in Korea. Recently, owing to air-environmental stress and various fungal diseases, greenhouse cultivation has been suggested as an alternative. However, the optimal light transmission rate (LTR) in the greenhouse has not been established. Methods: The effect of LTR on photosynthesis rate, growth, and ginsenoside content of ginseng was examined by growing ginseng at the greenhouse under 6%, 9%, 13%, and 17% of LTR. Results: The light-saturated net photosynthesis rate ($A_{sat}$) and stomatal conductance ($g_{s}$) of ginseng increased until the LTR reached 17% in the early stage of growth, whereas they dropped sharply owing to excessive leaf chlorosis at 17% LTR during the hottest summer period in August. Overall, 6-17% of LTR had no effect on the aerial part of plant length or diameter, whereas 17% and 13% of LRT induced the largest leaf area and the highest root weight, respectively. The total ginsenoside content of the ginseng leaves increased as the LTR increased, and the overall content of protopanaxatriol line ginsenosides was higher than that of protopanaxadiol line ginsenosides. The ginsenoside content of the ginseng roots also increased as the LTR increased, and the total ginsenoside content of ginseng grown at 17% LTR increased by 49.7% and 68.3% more than the ginseng grown at 6% LTR in August and final harvest, respectively. Conclusion: These results indicate that 13-17% of LTR should be recommended for greenhouse cultivation of ginseng.

Production of ginsenoside aglycone (protopanaxatriol) and male sterility of transgenic tobacco co-overexpressing three Panax ginseng genes: PgDDS, CYP716A47, and CYP716A53v2

  • Gwak, Yu Shin;Han, Jung Yeon;Choi, Yong Eui
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.261-271
    • /
    • 2019
  • Background: Protopanaxatriol (PPT) is an aglycone of ginsenosides, which has high medicinal values. Production of PPT from natural ginseng plants requires artificial deglycosylation procedures of ginsenosides via enzymatic or physicochemical treatments. Metabolic engineering could be an efficient technology for production of ginsenoside sapogenin. For PPT biosynthesis in Panax ginseng, damarenediol-II synthase (PgDDS) and two cytochrome P450 enzymes (CYP716A47 and CYP716A53v2) are essentially required. Methods: Transgenic tobacco co-overexpressing P. ginseng PgDDS, CYP716A47, and CYP716A53v2 was constructed via Agrobacterium-mediated transformation. Results: Expression of the three introduced genes in transgenic tobacco lines was confirmed by Reverse transcription-polymerase chain reaction (RT-PCR). Analysis of liquid chromatography showed three new peaks, dammarenediol-II (DD), protopanaxadiol (PPD), and PPT, in leaves of transgenic tobacco. Transgenic tobacco (line 6) contained $2.8{\mu}g/g$ dry weight (DW), $7.3{\mu}g/g$ DW, and $11.6{\mu}g/g$ DW of PPT, PPD, and DD in leaves, respectively. Production of PPT was achieved via cell suspension culture and was highly affected by auxin treatment. The content of PPT in cell suspension was increased 37.25-fold compared with that of leaves of the transgenic tobacco. Transgenic tobacco was not able to set seeds because of microspore degeneration in anthers. Transmission electron microscopy analysis revealed that cells of phloem tissue situated in the center of the anther showed an abnormally condensed nuclei and degenerated mitochondria. Conclusion: We successfully achieved the production of PPT in transgenic tobacco. The possible factors deriving male sterility in transgenic tobacco are discussed.

A possible mechanism to the antidepressant-like effects of 20 (S)-protopanaxadiol based on its target protein 14-3-3 ζ

  • Chen, Lin;Li, Ruimei;Chen, Feiyan;Zhang, Hantao;Zhu, Zhu;Xu, Shuyi;Cheng, Yao;Zhao, Yunan
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.666-674
    • /
    • 2022
  • Background: Ginsenosides and their metabolites have antidepressant-like effects, but the underlying mechanisms remain unclear. We previously identified 14-3-3 ζ as one of the target proteins of 20 (S)-protopanaxadiol (PPD), a fully deglycosylated ginsenoside metabolite. Methods: Corticosterone (CORT) was administered repeatedly to induce the depression model, and PPD was given concurrently. The tail suspension test (TST) and the forced swimming test (FST) were used for behavioral evaluation. All mice were sacrificed. Golgi-cox staining, GSK 3β activity assay, and Western blot analysis were performed. In vitro, the kinetic binding analysis with the Biolayer Interferometry (BLI) was used to determine the molecular interactions. Results: TST and FST both revealed that PPD reversed CORT-induced behavioral deficits. PPD also ameliorated the CORT-induced expression alterations of hippocampal Ser9 phosphorylated glycogen synthase kinase 3β (p-Ser9 GSK 3β), Ser133 phosphorylated cAMP response element-binding protein (p-Ser133 CREB), and brain-derived neurotrophic factor (BDNF). Moreover, PPD attenuated the CORT-induced increase in GSK 3β activity and decrease in dendritic spine density in the hippocampus. In vitro, 14-3-3 ζ protein specifically bound to p-Ser9 GSK 3β polypeptide. PPD promoted the binding and subsequently decreased GSK 3β activity. Conclusion: These findings demonstrated the antidepressant-like effects of PPD on the CORT-induced mouse depression model and indicated a possible target-based mechanism. The combination of PPD with the 14-3-3 ζ protein may promote the binding of 14-3-3 ζ to p-GSK 3β (Ser9) and enhance the inhibition of Ser9 phosphorylation on GSK 3β kinase activity, thereby activating the plasticity-related CREBeBDNF signaling pathway.

Inhibitory Effect of Ginseng Saponins and Polysaccharides on Infection and Vacuolation of Helicobacter pylori

  • Kim, Jong-Mi;Shln, Ji-Eun;Han, Myung-Joo;Park, Sung-Hwan;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.706-709
    • /
    • 2003
  • Ginsenosides and polysaccharides were isolated from Panax ginseng C.A. Meyer (Family Araliaceae) by treating at low ($60^{\circ}C$, LT), mild ($100^{\circ}C$, MT), and high ($120^{\circ}C$, HT) temperatures, and their inhibitory effects on growth, infection, and VacA vacuolation of Helicobacter pylori (HP) were investigated. The molecular weights of polysaccharides decreased as the processing temperature increased. Ginseng polysaccharides inhibited the HP infection into KATO III cells, but did not inhibit growth of HP and VacA vacuolation of HeLa cells. HT polysaccharides showed the most potent inhibition with $IC_50$ value of 6.8 mg/ml. Ginseng saponins did not inhibit the infection of HP into KATO cells. However, 20(s)-protopanaxadiol showed the most potent inhibition of HP growth and vacuolation of HeLa by VacA toxin with $IC_50$ values of 0.05 and 0.067 mg/ml, respectively.

Triterpenoid Ginsenoside Biosynthesis in Panax ginseng C. A. Meyer (인삼에서의 트리터페노이드 진세노사이드의 생합성)

  • Kim, Yu-Jin;Lee, Ok-Ran;Yang, Deok-Chun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.20-20
    • /
    • 2012
  • Isoprenoids represent the most diverse group of metabolites, which are functionally and structurally identified in plant organism to date. Ginsenosides, glycosylated triterpenes, are considered to be the major pharmaceutically active ingredient of ginseng. Its backbones, categorized as protopanaxadiol (PPD), protopanaxatriol (PPT), and oleanane saponin, are synthesized via the isoprenoid pathway by cyclization of 2,3-oxidosqualene mediated with dammarenediol synthase or beta-amyrin synthase. The rate-limiting 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), which is the first committed step enzyme catalyzes the cytoplasmic mevalonate (MVA) pathway for isoprenoid biosynthesis. DXP reductoisomerese (DXR), yields 2-C-methyl-D-erythritol 4-phosphate (MEP), is partly involved in isoprenoid biosynthesis via plastid. Squalene synthase and squalene epoxidase are involved right before the cyclization step. The triterpene backbone then undergoes various modifications, such as oxidation, substitution, and glycosylation. Here we will discuss general biosynthesis pathway for the production of ginsenoside and its modification based on their subcellular biological functions.

  • PDF