• Title/Summary/Keyword: Proton Nuclear Magnetic Resonance

Search Result 97, Processing Time 0.032 seconds

Preparation of Anhydrous Crosslinked Graft Copolymer Electrolyte Membrane (무가습 가교 가지형 공중합체 전해질 막의 제조)

  • Roh, Dong-Kyu;Koh, Joo-hwan;Park, Jung-tae;Seo, Jin-ah;Kim, Jong-hak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.270-273
    • /
    • 2009
  • A comb-like copolymer consisting of a poly(vinylidene fluoride-co-chlorotrifluoro-ethylene) backbone and poly(hydroxy ethyl acrylate) side chains, i.e. P(VDF-co-CTFE)-g-PHEA, was synthesized through atom transfer radical polymerization (ATRP) using CTFE units as a macroinitiator. Successful synthesis and a microphase-separated structure of the copolymer were confirmed by proton nuclear magnetic resonance (1H-NMR), FT-IR spectroscopy, and transmission electron microscopy (TEM). This comb-like polymer was crosslinked with 4,5-imidazole dicarboxylic acid (IDA) via the esterification of the -OH groups of PHEA and the -COOH groups of IDA. Upon doping with phosphoric acid ($H_3PO_4$) to form imidazole-$H_3PO_4$ complexes, the proton conductivity of the membranes continuously increased with increasing $H_3PO_4$ content. A maximum proton conductivity of 0.015 S/cm was achieved at $120^{\circ}C$ under anhydrous conditions. In addition, these P(VDF-co-CTFE)-g-PHEA/IDA/$H_3PO_4$ membranes exhibited good mechanical properties (765 MPa of Young's modulus), and high thermal stability up to $250^{\circ}C$, as determined by a universal testing machine (UTM) and thermal gravimetric analysis (TGA), respectively.

  • PDF

The proton nuclear magnetic resonance spectral analysis of human blood plasma lipoprotein (혈장지 단백질에 대한 핵자기 공명 분광 분석)

  • Song, In-Chan;Kang, Sa-Ouk;Kim, Noe-Kyeong;Im, Jung-Gi;Min, Byoung-Goo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.29-34
    • /
    • 1989
  • 300 MHz proton NMR spectra of human blood plasma were analyzed by deconvolution of spectrum, and we compared its results with Fossel's test in normal (15 cases), liver cancer (14 cases) , and other cancer (14 cases) groups. This analysis had enabled us to obtain dynamic characteristics of each individual lipoprotein. As a result of deconvolution method, the VLDL and chylomicron intensity level were found to be elevated in the patients with liver cancer. Moment ratio values of $CH_2$ resonance in the raw spectrum were found to be higher than the normal group for patients with, malignant tumors other than liver cancer. These differences between the three groups could not be found in the conventional Fossel's test. We could simulate plasma spectra by addition of spectra of individual lipoproteins through deconvolution method. Further clinical trials in larger populations and additional biochemical method may shed new light on many of clinical and biochemical interests for knowing characteristics about lipoprotein not separated from blood and the background of Fossel test.

  • PDF

Molecular interaction between a reduced riboflavin derivative and salicylic acid derivatives

  • Yu, Byung-Sul;Sohn, Dong-Hwan;Sohn, Dong-Hwan
    • Archives of Pharmacal Research
    • /
    • v.8 no.3
    • /
    • pp.99-107
    • /
    • 1985
  • The interaction of reduced riboflavin 2', 3', 4', 5'-tetrabutyrate with salicylic acid, aspirin, and salicylamide has been spectroscopically investigated to determine the binding mechanism. Hydrogen-1 and carbon-13 unclear magnetic resonance, infrared, and absoption spectra were measured in chloform-d and chloroform. The association of the reduced riboflavin with salicylic acid derivatives is different from that osidizd one. Salicylic acid and the reduced riboflavin form a cyclic hydrogen bounded complex through the imino (3-N, 5-N) protons and the carbonyl (2-C, 4-C) oxygens of the isolloxazine ring of the latter, and the carboxylic hydroxyl proton and carbonyl oxygen of the former. Aspirin and the reduced riboflavin form a complex by the same mode as salicylic acid. Salicylamide forms a cyclic hydrogen bonded complex with the reduced riboflavin through the imino (3-N, 5-N) protons and the carbonyl (2-C, 4-C) oxygens of the isoalloxazine ring, and the amino proton and the carbonyl oxygen of salic aylmide. It appears that both the oxidized and reduced form of riboflavin are associated with salicylic acid derivatives.

  • PDF

The Spin-Rotation Interaction of the Proton and the Fluorine Nucleus in the Tetrahedral Spherical Top Molecules

  • Lee, Sang-Soo;Ozier, Irving;Ramsey, N.F.
    • Nuclear Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.38-43
    • /
    • 1973
  • The spin-rotation constants of the proton and tile fluorine nucleus in C $H_4$, Si $H_4$, Ge $H_4$, C $F_4$, Si $F_4$ and Ge $F_4$ were determined experimentally by the molecular beam magnetic resonance method. From the Hamiltonian and the high field approximation, the quantized energy level is given by the following equation. W $m_{I}$ $m_{J}$=- $g_{I}$ $m_{I}$H- $g_{J}$ $m_{J}$H- $C_{av}$ $m_{I}$ $m_{J}$, where $c_{av}$ is one third of the trace of the C tensor. In the nuclear resonance experiment, the proton and the fluorine nuclear resonance curves consist of many unresolved lines given by v=- $g_{J}$H- $C_{av}$ $m_{I}$, and a Gaussian approximation is made to correlate $c_{av}$ to the experimentally obtained half-width of the resonance curve. In the rotational resonance experiment, the five resonance peaks as predicted by v=- $g_{I}$H- $c_{av}$ $m_{I}$, $m_{I}$=0, $\pm$1 and $\pm$2, were all observed. The magnitude of car was determined by measuring the frequency distance between two adjacent peaks. The sign of $c_{av}$ was determined by the side peak suppression technique. The technique is described, and the sign and magnitude of the spin-rotation constant cav are summarized as following: for C $H_4$ -10.3$\pm$0.4tHz(from the rotational resonance), for SiH +3.71$\pm$0.08kHz(from the nuclear resonance), for Ge $H_4$+3.79$\pm$0.13kHz(from the nuclear resonance), for C $F_4$, -6.81$\pm$0.08kHz(from the rotational resonance), for Si $F_4$, -2.46$\pm$0.06kHz(from the rotational resonance), and finally for Ge $F_4$-1.84$\pm$0.04kHz(from the rotational resonance).onal resonance).esonance).

  • PDF

Evaluations of Spectral Analysis of in vitro 2D-COSY and 2D-NOESY on Human Brain Metabolites (인체 뇌 대사물질에서의 In vitro 2D-COSY와 2D-NOESY 스펙트럼 분석 평가)

  • Choe, Bo-Young;Woo, Dong-Cheol;Kim, Sang-Young;Choi, Chi-Bong;Lee, Sung-Im;Kim, Eun-Hee;Hong, Kwan-Soo;Jeon, Young-Ho;Cheong, Chae-Joon;Kim, Sang-Soo;Lim, Hyang-Sook
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.1
    • /
    • pp.8-19
    • /
    • 2008
  • Purpose : To investigate the 3-bond and spatial connectivity of human brain metabolites by scalar coupling and dipolar nuclear Overhauser effect/enhancement (NOE) interaction through 2D- correlation spectroscopy (COSY) and 2D- NOE spectroscopy (NOESY) techniques. Materials and Methods : All 2D experiments were performed on Bruker Avance 500 (11.8 T) with the zshield gradient triple resonance cryoprobe at 298 K. Human brain metabolites were prepared with 10% $D_2O$. Two-dimensional spectra with 2048 data points contains 320 free induction decay (FID) averaging. Repetition delay was 2 sec. The Top Spin 2.0 software was used for post-processing. Total 7 metabolites such as N-acetyl aspartate (NAA), creatine (Cr), choline (Cho), lutamine (Gln), glutamate (Glu), myo-inositol (Ins), and lactate (Lac) were included for major target metabolites. Results : Symmetrical 2D-COSY and 2D-NOESY pectra were successfully acquired: COSY cross peaks were observed in the only 1.0-4.5 ppm, however, NOESY cross peaks were observed in the 1.0-4.5 ppm and 7.9 ppm. From the result of the 2-D COSY data, cross peaks between the methyl protons ($CH_3$(3)) at 1.33 ppm and methine proton (CH(2)) at 4.11 ppm were observed in Lac. Cross peaks between the methylene protons (CH2(3,$H{\alpha}$)) at 2.50ppm and methylene protons ($CH_2$,(3,$H_B$)) at 2.70 ppm were observed in NAA. Cross peaks between the methine proton (CH(5)) at 3.27 ppm and the methine proton (CH(4,6)) at 3.59 ppm, between the methine proton (CH(1,3)) at 3.53 ppm and methine proton (CH(4,6)) at 3.59 ppm, and between the methine proton (CH(1,3)) at 3.53 ppm and methine proton (CH(2)) at 4.05 ppm were observed in Ins. From the result of 2-D NOESY data, cross peaks between the NH proton at 8.00 ppm and methyl protons ($CH_3$) were observed in NAA. Cross peaks between the methyl protons ($CH_3$(3)) at 1.33 ppm and methine proton (CH(2)) at 4.11 ppm were observed in Lac. Cross peaks between the methyl protons (CH3) at 3.03 ppm and methylene protons (CH2) at 3.93 ppm were observed in Cr. Cross peaks between the methylene protons ($CH_2$(3)) at 2.11 ppm and methylene protons ($CH_2$(4)) at 2.35 ppm, and between the methylene protons($CH_2$ (3)) at 2.11 ppm and methine proton (CH(2)) at 3.76 ppm were observed in Glu. Cross peaks between the methylene protons (CH2 (3)) at 2.14 ppm and methine proton (CH(2)) at 3.79 ppm were observed in Gln. Cross peaks between the methine proton (CH(5)) at 3.27 ppm and the methine proton (CH(4,6)) at 3.59 ppm, and between the methine proton (CH(1,3)) at 3.53 ppm and methine proton (CH(2)) at 4.05 ppm were observed in Ins. Conclusion : The present study demonstrated that in vitro 2D-COSY and NOESY represented the 3-bond and spatial connectivity of human brain metabolites by scalar coupling and dipolar NOE interaction. This study could aid in better understanding the interactions between human brain metabolites in vivo 2DCOSY study.

  • PDF

Determination of Bulk Density and Internal Structure of Red Ginseng Root Using NMR (NMR을 이용한 홍삼의 용적밀도 측정 및 내부 조직 판별)

  • ;R. Ruan
    • Journal of Ginseng Research
    • /
    • v.22 no.2
    • /
    • pp.96-101
    • /
    • 1998
  • This paper describes the determination of bulk density and the discrimination of internal structure of red ginseng by nuclear magnetic resonance (NMR). The 102 red ginseng roots were tested for bulk density. The NMR properties measured by NMR parameters such as spin-lattice relaxation time ($T_1$) and spin-spin relaxation time ($T_2$) were determined using the low field proton NMR analyzer. Bulk density of red ginseng root showed a highly negative significant correlation (r=-0.8934) with the value of $T_1$, but a highly positive significant correlation (r=0.7672 and 0.5909) with the value of T21 (short T2) and T22 (long T2), respectively. Multiple regression equation, Y=-0.0069.$T_1$+0.3044.$T_{21}$-0.0156.$T_{22}$-0.6368, using the MNR parameter values of 80 red ginseng roots can effectively predict the bulk density of 22 red ginseng roots with the correlation coefficient of 0.9396 and the standard error of 0.086. The differences in the internal structure of normal and inside white part of red ginseng were easily found by the signal intensity of NMR image based on magnetic properties of proton nucleus.

  • PDF

Solution Nuclear Magnetic Resonance Spectral Characterization of Iron(II) Porphyrin Complexes of Weakly Coordinating Anions

  • Song, Byung-Ho;Park, Bong-Jin;Han, Chul-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.119-122
    • /
    • 2002
  • Weakly coordinating anions show little affinity for binding to unfunctionalized iron(II) porphyrins. The electron-deficient 5, 10, 15, 20-tetrakis(pentafluorophenyl)porphinatoiron(II) compound is utilized in this study to demonstrate solution coordination by chloride, bromide and acetate ions. The binding strength of anions to the iron(II) porphyrin is reflected by a systematic change in pyrrole proton chemical shift in $^1H$ NMR spectra; the pyrrole resonance moves downfield when the ${\sigma}$-donor ability of anions is decreased.

A Study on the Nuclear Magnetic Resonance Spectra of Halogen Substituted Anisole Derivatives (할로겐 치환아니솔유도체의 핵자기공명스펙트라에 관한 연구)

  • You Sun Kim
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.2
    • /
    • pp.94-101
    • /
    • 1977
  • The NMR spectra of 2,4-disubstituted or 2,4,6-trisubstituted anisole derivative were examined to study the chemical shift of the ring proton signal. It was found that the chemical shift of the ring proton nearest to the 2-substituted group was influenced by the deshielding effect of the neighboring substituted groups in order of the Van der Waals radii of those groups. These observations were interpreted as a steric influence of 2-substituted group on the reactivity of the neighboring ring proton itself. The spectroscopical data were presented and the results were discussed with views of the above conceptions.

  • PDF

Structural and Thermal Analysis and Membrane Characteristics of Phosphoric Acid-doped Polybenzimidazole/Strontium Titanate Composite Membranes for HT-PEMFC Applications

  • Selvakumar, Kanakaraj;Kim, Ae Rhan;Prabhu, Manimuthu Ramesh;Yoo, Dong Jin
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.373-379
    • /
    • 2021
  • A series of novel PBI/SrTiO3 nanocomposite membranes composed of polybenzimidazole (PBI) and strontium titanate (SrTiO3) with a perovskite structure were fabricated with various concentrations of SrTiO3 through a solution casting method. Various characterization techniques such as proton nuclear magnetic resonance, thermogravimetric analysis, atomic force microscopy (AFM) and AC impedance spectroscopy were used to investigate the chemical structure, thermal, phosphate absorption and morphological properties, and proton conductivity of the fabricated nanocomposite membranes. The optimized PBI/SrTiO3-8 polymer nanocomposite membrane containing 8wt% of SrTiO3 showed a higher proton conductivity of 7.95 × 10-2 S/cm at 160℃ compared to other nanocomposite membranes. The PBI/SrTiO3-8 composite membrane also showed higher thermal stability compared to pristine PBI. In addition, the roughness change of the polymer composite membrane was also investigated by AFM. Based on these results, nanocomposite membranes based on perovskite structures are expected to be considered as potential candidates for high-temperature PEM fuel cell applications.

CT and MRI Image Fusion Reproducibility and Dose Assessment on Treatment Planning System (치료계획시스템에서 전산화단층촬영과 자기공명영상의 영상융합 재현성 및 선량평가)

  • Choi, Jae-Hyock;Park, Cheol-Soo;Seo, Jeong-Min;Cho, Jae-Hwan;Choi, Cheon-Woong
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.6
    • /
    • pp.191-196
    • /
    • 2014
  • The purpose of this study is to evaluate the reproducibility and usefulness of an image through the fusion of the computed tomography image and the magnetic resonance image by using a self-produced phantom when planning the treatment, and also to compare and analyze the target dose on the acquired image. The size of small hole and the reproducibility of capacity existed in the phantom on the image of the phantom obtained by the computed tomography and the magnetic resonance image of the phantom scanning with different intensity of magnetic field are compared, and the change of dose in the random target is compared and analyzed.