• Title/Summary/Keyword: Protocatechuic acid

Search Result 135, Processing Time 0.019 seconds

Identification of Allelopathic Substances from Polygonum hydropiper and Polygonum aviculare (여뀌.마디풀로부터 상호대립억제작용물질(相互對立抑制作用物質)의 분리(分離).동정(同定))

  • Woo, S.W.;Kim, K.U.
    • Korean Journal of Weed Science
    • /
    • v.7 no.2
    • /
    • pp.144-155
    • /
    • 1987
  • Water extracts of polygonum hydropiper and Polygonum aviculare completely inhibited the germination of lettuce seeds. Methanol extracts from these two species also inhibited the seed germination of lettuce (Lactuca sativa) and Oenothera odorata. Fifteen phenolic acids in total were identified by GLC from P. hydropiper and eighteen from P. aviculare. The most common phenolic acids identified from P. hydropiper were sinapic, salicylic+vanillic and ferulic acid presented in all the fractions. In addition, salicylic+vanillic, tannic+gallic, sinapic, ferulic and p-coumaric acid seemed to be important phenolic compounds in terms of quantity. However, salicylic+vanillic acids were the unique phenolic acids occurred in all the fractions of P. aviculare. The others such as tannic+gallic, sinapic, ferulic, p-coumaric acid, p-cresol and catechol present in large amount appeared also the important phenolic substances influencing allelopathic effects of P. aviculare. Linolenic acid and oxalic acid were the major fatty and organic acids in both plant species, presented in 2.38mg/g and 20.588mg/g in P. hydropiper, 3.70mg/g and 14.288mg/g in P. aviculare, respectively, which seem to be exhibiting allelopathic effects of these plants. Total alkaloids were presented in low amount such as 0.20% in P. hydropiper arid 0.22% in P. aviculare which may not be important elements. Pet. ether extracts were 2.42% in P. hydropiper and 1.65% in P. aviculare, which exhibit another potential for allelopathic effects that need further investigation. Various authentic phenolic compounds at different concentrations inhibited the germination of lettuce seed, indicating that the phenolic substances identified here may be directly related to biologically active substance.

  • PDF

Development of Analytical Method for Quality Control from New Herbal Medicine(HPL-4) (새로운 생약복합제제(HPL-4)의 품질관리를 위한 분석법 개발)

  • Kim, Se-Gun;Sharma, Dipak Kumar;Lamichhane, Ramakanta;Lee, Kyung-Hee;Han, Sang-Mi;Jung, Hyun-Ju
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.4
    • /
    • pp.338-345
    • /
    • 2014
  • HPL-4 is a new herbal formulation developed for the treatment of osteoarthritis. In this study, we took HPL-4 to develop a method for simultaneous determination of nine marker compounds (protocatechuic acid, chlorogenic acid, liriodendrin, nodakenin, ${\beta}$-$\small{D}$-(3-O-sinapoyl)frucofuranosyl-${\alpha}$-$\small{D}$-(6-O-sinapoyl)glucopyranoside, quercitrin, 6-gingerol, decursin and decursinol angelate) present in the formulation. The analytes were separated by UPLC system consisting of diode array detector at 205 nm and RP-amide column, and solvent system of $ACN/0.1%H_3PO_4$. Analytical method was validated to evaluate its linearity, limit of detection (LOD), limit of quantification (LOQ), precision, and accuracy. All standards showed good linearity ($R^2$ >0.99) in the rage of $0.25-400.0{\mu}g/mL$. The LOD and LOQ were within the range of 0.021-0.148 and $0.070-0.448{\mu}g/mL$, respectively. Intra- and inter-day precision was less than RSD 4.0% and the accuracy was range from 92.00-104.81% with RSD<4.2%. The results suggest that the developed UPLC method is precise, accurate and effective, and could be applied for quality control of HPL-4 formulation.

Industrial potential of domestic Zanthoxylum piperitum and Zanthoxylum schinifolium: Protective effect of both extracts on high glucose-induced neurotoxicity (국내산 초피와 산초의 산업적 활용 가능성: 고당으로 유도된 뇌신경세포 독성에 대한 추출물의 보호 효과)

  • Han, Hye Ju;Park, Seon Kyeong;Kim, Min Ji;An, Jun Woo;Lee, Se Jin;Kang, Jin Yong;Kim, Jong Min;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.274-283
    • /
    • 2020
  • This study focused on the in vitro investigation of antioxidant and anti-diabetic activities, along with neuroprotection against high glucose-induced cytotoxicity, in order to evaluate the physiological effects of Zanthoxylum piperitum and Zanthoxylum schinifolium. The highest total phenolic content was measured in the 40% ethanolic extracts of Zanthoxylum piperitum (EZP) and Zanthoxylum schinifolium (EZS). The in vitro EZP antioxidant activity showed a relatively higher ABTS/DPPH radical scavenging activity and malondialdehyde inhibitory effect than that of EZS. The EZP inhibited carbohydrate hydrolysis (α-glucosidase and α-amylase) more efficiently than EZS in anti-diabetic tests. However, EZS showed a more efficient inhibition of advanced glycation end-products formation than EZP. In addition, both EZP and EZS effectively protected human-derived neuronal cells from high glucose-induced cytotoxicity. Finally, the physiological compounds were analyzed using UPLC IMS-QTOF/MSE, and the main EZP (quercetin-3-O-glucoside and 3-caffeoylquinic acid) and EZS (5-caffeoylquinic acid) compounds were identified as phenolic compounds.

Protection of UV-derived Skin Cell Damage and Anti-irritation Effect of Juniperus chinensis Xylem Extract (향나무추출물의 광손상으로부터 피부세포 보호와 자극완화 효과에 대한 연구)

  • 김진화;박성민;심관섭;이범천;표형배
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.1
    • /
    • pp.63-71
    • /
    • 2004
  • The human skin is constantly exposed to environmental irritants such as ultraviolet, smoke, chemicals. Free radicals and reactive oxygen species (ROS) caused by these environmental facts play critical roles in cellular damage. These irritants are in themselves damaging to the skin structure but they also participate the immensely complex inflammatory reaction. The purpose of this study was to investigate the skin cell protective effect of Juniperus chinensis xylem extract on the UV and SLS-induced skin cell damages. We tested free radical and superoxide scavenging effect in vitro. We found that Juniperus chinensis xylem extracts had potent radical scavenging effect by 98% at 100 $\mu\textrm{g}$/mL. Fluorometric assays of the proteolytic activities of matrix metalloproteinase-l(MMP-1, collagenase) were performed using fluorescent collagen substrates. UV A induced MMP-1 synthesis and activity were analyzed by enzyme-linked immunosorbent assay (ELISA) and gelatin-based zymography in skin fibroblasts. The extract of Juniperus chinensis showed strong inhibitory effect on MMP-1 activities by 97% at 100 $\mu\textrm{g}$/mL and suppressed the UVA induced expression of MMP-1 by 79% at 25 $\mu\textrm{g}$/mL. This extract also showed strong inhibition on MMP-2 activity in UVA irradiated fibroblast by zymography. We also examined anti-inflammatory effects by the determination test of proinflammatory cytokine, interleukin 6 in HaCaT keratinocytes. In this test Juniperus chinensis decreased expression of interleukin 6 about 30%. Expression of prostaglandin E$_2$, (PGE$_2$) after UVB irradiation was measured by competitive enzyme immunoassay (EIA) using PGE$_2$ monoclonal antibody. At the concentrations of 5-50 $\mu\textrm{g}$/mL of the extracts, the production of PGE$_2$ by HaCaT keratinocytes (24 hours after 10 mJ/$\textrm{cm}^2$ UVB irradiation) was significantly inhibited in culture supernatants (p〈0.05). The viability of cultured HaCaT keratinocytes was significantly reduced at the doses of above 10 mJ/$\textrm{cm}^2$ of UVB irradiation, but the presence of these extracts improved cell viability comparing to control after UVB irradiation. We also investigated the protective effect of this extract in sodium lauryl sulfate (SLS)-induced irritant skin reactions from 24 hour exposure. Twice a day application of the extract for reducing local inflammation in human skin was done. Irritant reactions were assessed by various aspects of skin condition, that is, erythema (skin color reflectance) and transepidermal water loss (TEWL). After 5 days the extract was found to reduce SLS-induced skin erythema and improve barrier regeneration when compared to untreated symmetrical test site. In conclusion, our results suggest that Juniperus chinensis can be effectively used for the prevention of UV and SLS-induced adverse skin reactions such as radical production, inflammation and skin cell damage.

Onion Beverages Improve Amyloid β Peptide-Induced Cognitive Defects via Up-Regulation of Cholinergic Activity and Neuroprotection (양파(Allium cepa L.) 음료의 콜린성 활성 증가 및 뇌신경세포 보호로 인한 Amyloid β Peptide 유도에 대한 인지장애 개선 효과)

  • Park, Seon Kyeong;Kim, Jong Min;Kang, Jin Yong;Ha, Jeong Su;Lee, Du Sang;Kim, Ah-Na;Choi, Sung-Gil;Lee, Uk;Heo, Ho Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.11
    • /
    • pp.1552-1563
    • /
    • 2016
  • To examine the cognitive function of onion (Allium cepa L.) beverages (odourless and fortified), we analyzed in vitro neuronal cell protection against $H_2O_2$-induced cytotoxicity and performed in vivo tests on amyloid beta ($A{\beta}$)-induced cognitive dysfunction. Cellular oxidative stress and cell viability were evaluated by DCF-DA assay and MTT assay. These results show that fortified beverage resulted in better neuronal cell protection than odourless beverage at lower concentration ($0{\sim}100{\mu}g/mL$). Fortified beverage also showed more excellent acetylcholinesterase (AChE) inhibitory activity ($IC_{50}$: 4.20 mg/mL) than odourless beverage. The cognitive functions of odourless beverage and fortified beverage in $A{\beta}$-induced neurotoxicity were assessed by Y-maze, passive avoidance, and Morris water maze tests. The results show improved cognitive function in both groups treated with beverages. After in vivo tests, cholinergic activities were determined based on AChE inhibition and acetylcholine levels, and antioxidant activities were measured as SOD, oxidized glutathione (GSH)/total GSH ratio, and MDA levels in mouse brain tissue. In a Q-TOF UPLC/MS system, main compounds were analyzed as follows: odourless beverage (five types of sugars and three types of phenolics) and fortified beverages (six types of phenolics and two types of steroidal saponins).