• 제목/요약/키워드: Proteome Approach

검색결과 58건 처리시간 0.021초

Physiological and Proteomics Analysis to Potassium Starvation in Rice

  • Kim, Sang-Gon;Wang, Yiming;Lee, Chang-Hoon;Chi, Yong-Hun;Kim, Keun-Ki;Choi, In-Soo;Kim, Yong-Chul;Kang, Kyu-Young;Kim, Sun-Tae
    • 한국환경농학회지
    • /
    • 제30권4호
    • /
    • pp.395-401
    • /
    • 2011
  • BACKGROUND: Potassium (K) is one of the macronutrients which are essential for plant growth and development. Its deficiency in paddy soils is becoming one of the limiting factors for increasing rice yield in Asia. METHODS AND RESULTS: To investigate physiological symptoms under K-starvation (NP) compared with complete media (NPK) condition, we measured shoot/root length, weight, nutrients, and patterns of protein expression. The shoot growth was significantly reduced, but root growth was not affected by K-starvation. However, biomasses were decreased in both shoot and root. Uptake of K was reduced up to 85%, while total concentrations of P, Ca, Mg, Na were increased in root and shoot. To better understand the starved K mechanism of rice, comparative proteome analysis for proteins isolated from rice leaves was conducted using 2-DGE. Five spots of differentially expressed proteins were analyzed by MALDI-TOF MS. Analysis of these K-starvation response proteins suggested that they were involved in metabolism and defense. CONCLUSION(s): Physiological and 2-DGE based proteomics approach used in our study results in observation of morphology or nutrients change and identification of K-starvation responsive proteins in rice root. These results have important roles in maintaining nutrient homeostasis and would also be useful for further characterization of protein function in plant K nutrition.

Label-free quantitative proteomic analysis of Panax ginseng leaves upon exposure to heat stress

  • Kim, So Wun;Gupta, Ravi;Min, Cheol Woo;Lee, Seo Hyun;Cheon, Ye Eun;Meng, Qing Feng;Jang, Jeong Woo;Hong, Chi Eun;Lee, Ji Yoon;Jo, Ick Hyun;Kim, Sun Tae
    • Journal of Ginseng Research
    • /
    • 제43권1호
    • /
    • pp.143-153
    • /
    • 2019
  • Background: Ginseng is one of the well-known medicinal plants, exhibiting diverse medicinal effects. Its roots possess anticancer and antiaging properties and are being used in the medical systems of East Asian countries. It is grown in low-light and low-temperature conditions, and its growth is strongly inhibited at temperatures above $25^{\circ}C$. However, the molecular responses of ginseng to heat stress are currently poorly understood, especially at the protein level. Methods: We used a shotgun proteomics approach to investigate the effect of heat stress on ginseng leaves. We monitored their photosynthetic efficiency to confirm physiological responses to a high-temperature stress. Results: The results showed a reduction in photosynthetic efficiency on heat treatment ($35^{\circ}C$) starting at 48 h. Label-free quantitative proteome analysis led to the identification of 3,332 proteins, of which 847 were differentially modulated in response to heat stress. The MapMan analysis showed that the proteins with increased abundance were mainly associated with antioxidant and translation-regulating activities, whereas the proteins related to the receptor and structural-binding activities exhibited decreased abundance. Several other proteins including chaperones, G-proteins, calcium-signaling proteins, transcription factors, and transfer/carrier proteins were specifically downregulated. Conclusion: These results increase our understanding of heat stress responses in the leaves of ginseng at the protein level, for the first time providing a resource for the scientific community.

Differential Proteomic Analysis of Chinese fir Clone Leaf Response to Salicylic Acid

  • Yang, Mei;Lin, Sizu;Cao, Guangqiu
    • Journal of Forest and Environmental Science
    • /
    • 제26권2호
    • /
    • pp.83-94
    • /
    • 2010
  • Chinese fir (Latin name: Cunninghaimia lanceolata) is one of the major commercial coniferous trees. Most of Chinese fir forests are managed in successive rotation sites, which lead productivity to decline. Autotoxicity is the important reason for soil degradation of Chinese fir plantation, especially, phenolic acids are considered as the major allelopathic toxins which induce autotoxicity in Chinese fir rotation stands. We performed here proteomic approach to investigate the response of proteins in Chinese fir leaves to salicylic acid. The tube plantlets of Chinese fir clone were treated with 120 mg/L salicylic acid for 1, 3 and 5th day. 2-DE, coupled with MALDI-TOF-TOF/MS, was used to separate and identify the responsive proteins. We found 12, 7, and 12 candidate protein spots that were up- or down-regulated by at least 2.5 fold after 1, 3, and 5th day of the stress, respectively. Of these protein spots, 16 spots were identified successfully. According to the putative physiological functions, these proteins were categorized into five classes (1) the proteins involved in protein stability and folding, including 26S proteome, Grp78, Hsp70, Hsp90 and PPIase; (2) the protein involved in photosynthesis and respiration, including OEC 33 kDa subunit, GAPDH; (3) the protein related to cell endurance to acid, F-ATPase; (4) the protein related to cytoskeleton, tubulin; (5) the protein related to protein translation: prolyl-tRNA synthetase. These results give new insights into autotoxic substance stress response in Chinese fir leaves and provide preliminary footprints for further studies on the molecular signal mechanisms induced by the stress.

Reduction of fetuin-A levels contributes to impairment of Purkinje cells in cerebella of patients with Parkinson's disease

  • Sunmi Yoon;Napissara Boonpraman;Chae Young Kim;Jong-Seok Moon;Sun Shin Yi
    • BMB Reports
    • /
    • 제56권5호
    • /
    • pp.308-313
    • /
    • 2023
  • Phenotypic features such as ataxia and loss of motor function, which are characteristics of Parkinson's disease (PD), are expected to be very closely related to cerebellum function. However, few studies have reported the function of the cerebellum. Since the cerebellum, like the cerebrum, is known to undergo functional and morphological changes due to neuroinflammatory processes, elucidating key functional factors that regulate neuroinflammation in the cerebellum can be a beneficial therapeutic approach. Therefore, we employed PD patients and MPTP-induced PD mouse model to find cytokines involved in cerebellar neuroinflammation in PD and to examine changes in cell function by regulating related genes. Along with the establishment of a PD mouse model, abnormal shapes such as arrangement and number of Purkinje cells in the cerebellum were confirmed based on histological finding, consistent with those of cerebellums of PD patients. As a result of proteome profiling for neuroinflammation using PD mouse cerebellar tissues, fetuin-A, a type of cytokine, was found to be significantly reduced in Purkinje cells. To further elucidate the function of fetuin-A, neurons isolated from cerebellums of embryos (E18) were treated with fetuin-A siRNA. We uncovered that not only the population of neuronal cells, but also their morphological appearances were significantly different. In this study, we found a functional gene called fetuin-A in the PD model's cerebellum, which was closely related to the role of cerebellar Purkinje cells of mouse and human PD. In conclusion, morphological abnormalities of Purkinje cells in PD mice and patients have a close relationship with a decrease of fetuin-A, suggesting that diagnosis and treatment of cerebellar functions of PD patients might be possible through regulation of fetuin-A.

The Mitochondrial Warburg Effect: A Cancer Enigma

  • Kim, Hans H.;Joo, Hyun;Kim, Tae-Ho;Kim, Eui-Yong;Park, Seok-Ju;Park, Ji-Kyoung;Kim, Han-Jip
    • Interdisciplinary Bio Central
    • /
    • 제1권2호
    • /
    • pp.7.1-7.7
    • /
    • 2009
  • "To be, or not to be?" This question is not only Hamlet's agony but also the dilemma of mitochondria in a cancer cell. Cancer cells have a high glycolysis rate even in the presence of oxygen. This feature of cancer cells is known as the Warburg effect, named for the first scientist to observe it, Otto Warburg, who assumed that because of mitochondrial malfunction, cancer cells had to depend on anaerobic glycolysis to generate ATP. It was demonstrated, however, that cancer cells with intact mitochondria also showed evidence of the Warburg effect. Thus, an alternative explanation was proposed: the Warburg effect helps cancer cells harness additional ATP to meet the high energy demand required for their extraordinary growth while providing a basic building block of metabolites for their proliferation. A third view suggests that the Warburg effect is a defense mechanism, protecting cancer cells from the higher than usual oxidative environment in which they survive. Interestingly, the latter view does not conflict with the high-energy production view, as increased glucose metabolism enables cancer cells to produce larger amounts of both antioxidants to fight oxidative stress and ATP and metabolites for growth. The combination of these two different hypotheses may explain the Warburg effect, but critical questions at the mechanistic level remain to be explored. Cancer shows complex and multi-faceted behaviors. Previously, there has been no overall plan or systematic approach to integrate and interpret the complex signaling in cancer cells. A new paradigm of collaboration and a well-designed systemic approach will supply answers to fill the gaps in current cancer knowledge and will accelerate the discovery of the connections behind the Warburg mystery. An integrated understanding of cancer complexity and tumorigenesis is necessary to expand the frontiers of cancer cell biology.

Proteomic Analysis and the Antimetastatic Effect of N-(4methyl)phenyl-O-(4-methoxy) phenyl-thionocarbamate-Induced Apoptosis in Human Melanoma SK-MEL-28 cells

  • Choi Su-La;Choi Yun-Sil;Kim Young-Kwan;Sung Nack-Do;Kho Chang-Won;Park Byong-Chul;Kim Eun-Mi;Lee Jung-Hyung;Kim Kyung-Mee;Kim Min-Yung;Myung Pyung-Keun
    • Archives of Pharmacal Research
    • /
    • 제29권3호
    • /
    • pp.224-234
    • /
    • 2006
  • We employed human SK-MEL-28 cells as a model system to identify cellular proteins that accompany N-(4-methyl)phenyl-O-(4-methoxy)phenyl-thionocarbamate (MMTC)-induced apoptosis based on a proteomic approach. Cell viability tests revealed that SK-MEL-28 skin cancer cells underwent more cell death than normal HaCaT cells in a dose-dependent manner after treatment with MMTC. Two-dimensional electrophoresis in conjunction with matrixassisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry analysis or computer matching with a protein database further revealed that the MMTC-induced apoptosis is accompanied by increased levels of caspase-1, checkpoint suppressor-1, caspase-4, NF-kB inhibitor, AP-2, c-Jun-N-terminal kinase, melanoma inhibitor, granzyme K, G1/S specific cyclin D3, cystein rich protein, Ras-related protein Rab-37 or Ras-related protein Rab-13, and reduced levels of EMS (oncogene), ATP synthase, tyrosine-phosphatase, Cdc25c, 14-3-3 protein or specific structure of nuclear receptor. The migration suppressing effect of MMTC on SK-MEL-28 cell was tested. MMTC suppressed the metastasis of SK-MEL-8 cells. It was also identified that MMTC had little angiogenic effect because it did not suppress the proliferation of HUVEC cell line. These results suggest that MMTC is a novel chemotherapeutic and metastatic agents against the SK-MEL-28 human melanoma cell line.

출산 후 경과한 날에 따른 한국인 산모의 모유 단백체 분석 (Proteomic analysis of Korean mothers' human milk at different lactation stages; postpartum 1, 3, and 6 weeks)

  • 박종문;이후근;송승현;한원호;김미정;이주현;강남미
    • 분석과학
    • /
    • 제30권6호
    • /
    • pp.348-354
    • /
    • 2017
  • 이 연구는 출산 후 1, 3, 6주가 경과한 산모에서 얻은 모유의 단백체 발현 양상과 과 발현 단백질을 검출하는 것을 목적으로 하였다. 샷 건 정량 단백체 분석법을 이용하여 모유 중의 단백질을 동정하였고, 각 수유단계 간에 정량적 비교를 하였다. 각 주의 모유 샘플은 두 명의 산모로부터 얻어진 모유를 혼합하였고, 각 샘플 마다 3회 반복 실험을 하였다. Casein은 모유 내에 가장 많이 존재하는 단백질로서 실험의 정확성을 위하여 제거하였고, 트립신을 이용한 절편 화로 모유 단백질들을 펩타이드로 변환하였다. 처리된 펩타이드들은 역상 C18 미세관 크로마토그래피 및 이온-트랩 질량분석기를 이용하여 분석하였으며, Spectra Counting으로 단백질의 정량적 비교를 하였다. 각 샘플 당, 80-109 개의 단백질을 중복 제거한 후 동정하였다. 당화 단백질, metabolic enzyme, 및 lactoferrin, Carboxylic ester hydrolase, Clusterin을 포함하는 chaperon 효소들이 주로 검출되었다. 각 반복실험에서 재현성 있게 검출되는 63개의 단백질에 대한 정량적 비교분석 결과 25개의 단백질이 통계적으로 유의하게 수유단계에 따라 변화하는 것을 확인할 수 있었고, 특히 Ig lambda-7 chain C region과 Tenascin은 시간에 따라 현저하게 감소하였다. 향후 이와 같은 수유 단계에 따른 모유 내 단백의 변화가 생리적으로 가지는 의미에 관하여 추가적인 연구가 필요하다 생각된다.

탄저 치사독소 처리에 의한 생쥐 대식세포의 단백질체 발현 양상 분석 (Proteome Profiling of Murine Macrophages Treated with the Anthrax Lethal Toxin)

  • 정경화;서귀문;김성주;김지천;오선미;오광근;채영규
    • 미생물학회지
    • /
    • 제41권4호
    • /
    • pp.262-268
    • /
    • 2005
  • 탄저 치사독소는 생쥐 대식세포 (RAW 264.7)의 유전자 발현에 많은 변화를 초래한다. 이들 변화를 초래하는 치사독소의 역할은 아직 확실하게 밝혀지지 ???았다. 본 연구에서는, 치사독소가 처리된 생쥐 대식세포의 단백질 프로파일을 이차원 전기영동으로 분석하였고, MALDI-TOF 질량분석기를 사용하여 해당 단백질의 질량을 측정하였다. 펩타이드 질량 분석 데이터는 ProFound 데이터베이스를 이용하여 동정하였다. 차별화되어 발현된 단백질 중에서 절단된 mitogen-activated protein kinase kinase (Mek1)와 glucose-6-phosphate dehydrogenase (G6PD)가 치사독소 처리된 대식세포에서 각각 증가하였다. 치사독소를 처리하였을 경우, Mek1의 절단은 신호전달과정을 방해하고, 증가된 G6PD는 생성된 활성산소로부터 세포를 보호하는 역할을 하는 것으로 보인다. 단백질체 분석기술은 치사독소처리에 의한 생쥐 대식세포의 세포사멸 관련 단백질을 동정하는데 도움을 주어, 치사독소의 잠정적인 기질을 찾는데 유용할 것이다.