• Title/Summary/Keyword: Proteinase Inhibitor II Gene

Search Result 16, Processing Time 0.019 seconds

T7 RNA Polymerase Is Expressed in Plants in a Nicked but Active Form (T7 RNA polymerase 유전자의 담배식물에서의 발현)

  • Caviedes, Miguel A.;Thornburg, Robert W.;Park, Sang-Gyu
    • Applied Biological Chemistry
    • /
    • v.40 no.4
    • /
    • pp.271-276
    • /
    • 1997
  • We have prepared several chimeric constructs containing the bacteriophage T7 RNA polymerase gene under control of the wound-inducible potato proteinase inhibitor II (pin2) promoter and have transformed Nicotiana tabacum plants with these constructs. Southern blot analyses indicate that either one or two copies of the gene constructs are present in the transgenic plants. Northern blot analyses indicate that mRNA encoding T7 RNA polymerase is expressed in a wound-inducible manner. We purified T7 RNA polymerase and prepared antiserum. This antiserum was used for Western blot analyses to demonstrate that a protein which is cross reactive with T7 RNA polymerase is produced. The molecular mass of this protein is 80 kDa, a size which is consistant with the nicked form of the polymerase as is often seen when expressed in E. coli. RNA polymerase assays were used to indicate that the nicked form of T7 RNA polymerase is active and capable of incorporating labeled nucleotides into transcripts in vitro. Analysis of transgenic plants did indeed show that wound-inducible activation of the T7 RNA polymerase permits the establishment of a genetic system to overexpress genes in plants using T7 RNA polymerase(Received March 20, 1997; accepted May 2, 1997)

  • PDF

Vacuum infiltration transformation of non-heading Chinese cabbage (Brassica rapa L. ssp. chinensis) with the pinII gene and bioassay for diamondback moth resistance

  • Zhang, Junjie;Liu, Fan;Yao, Lei;Luo, Chen;Zhao, Qing;Huang, Yubi
    • Plant Biotechnology Reports
    • /
    • v.5 no.3
    • /
    • pp.217-224
    • /
    • 2011
  • Non-heading Chinese cabbage (Brassica rapa L. ssp. chinensis) is a popular vegetable in Asian countries. The diamondback moth (DBM), Plutella xylostella (L.), an insect with worldwide distribution, is a main pest of Brassicaceae crops and causes enormous crop losses. Transfer of the anti-insect gene into the plant genome by transgenic technology and subsequent breeding of insect-resistant varieties will be an effective approach to reducing the damage caused by this pest. We have produced transgenic non-heading Chinese cabbage plants expressing the potato proteinase inhibitor II gene (pinII) and tested the pest resistance of these transgenic plants. Non-heading Chinese cabbages grown for 45 days on which buds had formed were used as experimental materials for Agrobacterium-mediated vacuum infiltration transformation. Forty-one resistant plants were selected from 1166 g of seed harvested from the infiltrated plants based on the resistance of the young seedlings to the herbicide Basta. The transgenic traits were further confirmed by the Chlorophenol red test, PCR, and genomic Southern blotting. The results showed that the bar and pinII genes were co-integrated into the resistant plant genome. A bioassay of insect resistance in the second generation of individual lines of the transgenic plants showed that DBM larvae fed on transgenic leaves were severely stunted and had a higher mortality than those fed on the wild-type leaves.

Organ Specific Expression of the nos-NPT II Gene in Transgenic Hybrid Poplar (형질 전환된 포플러에 대한 nos-NPT II 유전자의 기관별 발현 특성)

  • Chun, Young Woo;Klopfenstein, Ned B.
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.1
    • /
    • pp.77-86
    • /
    • 1995
  • To effectively modify tree function with genetic engineering, transgenes must be expressed at the proper level in the appropriate tissues at suitable developmental stages. Toward understanding the spatial and temporal expression of transgenes in woody plants, transgene expression was evaluated in three greenhouse-grown, transgenic lines of Populus alba ${\times}$ P. grandidentata hybrid clone 'Hansen'. All transgenic poplar lines possess constructs containing the bacterial nopaline synthase(nos) promoter linked to a neomycin phosphotransferase II(NPT II) selectable marker gene. In addition, each transgenic poplar line contains one of the following gene constructs : 1) a wound-inducible potato proteinase inhibitor II (pin2) promoter linked to a chloramphenicol acetyltransferase(CAT) reporter gene. 2) a nos promoter linked to a PIN2 structural gene : or 3) a Cauliflower Mosaic Virus 35s promoter linked to a PIN2 structural gene. Polymerase chain reaction(PCR) was used to verify the presence of foreign genes in the poplar genome. Enzyme-linked immunosorbent assays(ELISAs) were used to evaluate organ specific expression of the nos-NPT II construct. NPT II expression was detected in leaves, petioles, stems, and roots of transgenic poplar, thereby indicating that the nos promoter is potentially effective for general constitutive expression of transgenes. NPT expression varied among transgenic poplar lines and among organs for one transgenic line, Tr15. With Tr15, NPT II levels were highest in older leaves and petioles. These results indicate that screening of several transgenic lines may be required to identify lines with optimal transgene expression.

  • PDF

Comparison of Gene Expression Profile in Eutopic Endometria with or without Endometriosis: A Microarray Study (자궁내막증 환자와 대조군에서의 자궁내막 유전자 발현의 차이: Microarray를 이용한 연구)

  • Chung, Min-Ji;Chung, Eun-Jung;Lee, Shin-Je;Kim, Moon-Kyu;Chun, Sang-Sik;Lee, Taek-Hoo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.34 no.1
    • /
    • pp.19-31
    • /
    • 2007
  • Objective: Pathogenesis of the endometriosis is very complex and the etiology is still unclear. Our hypothesis is that there may be some difference in gene expression patterns between eutopic endometriums with or without endometriosis. In this study, we analyzed the difference of gene expression profile with cDNA microarray. Methods: Endometrial tissues were gathered from patients with endometriosis or other benign gynecologic diseases. cDNA microarray technique was applied to screen the different gene expression profiles from early and late secretory phase endometria of those two groups. Each three mRNA samples isolated from early and late secretory phase of endometrial tissues of control were pooled and used as master controls and labeled with Cy3-dUTP. Then the differences of gene expression pattern were screened by comparing eutopic endometria with endometriosis, which were labeled with Cy5-dUTP. Fluorescent labeled probes were hybridized on a microarray of 4,800 human genes. Results: Twelve genes were consistently over-expressed in the endometrium of endometriosis such as ATP synthase H transporting F1 (ATP5B), eukaryotic translation elongation factor 1, isocitrate dehydrogenase 1 (NADP+), mitochondrial ribosomal protein L3, ATP synthase H+ transporting (ATP5C1) and TNF alpha factor. Eleven genes were consistently down-regulated in the endometriosis samples. Many extracellular matrix protein genes (decorin, lumican, EGF-containing fibulin-like extracellular matrix protein 1, fibulin 5, and matrix Gla protein) and protease/protease inhibitors (serine proteinase inhibitor, matrix metalloproteinase 2, tissue inhibitor of metalloproteinase 1), and insulin like growth factor II associated protein were included. Expression patterns of selected eight genes from the cDNA microarray were confirmed by quantitative RT-PCR or real time RT-PCR. Conclusion: The result of this analysis supports the hypothesis that the endometrium from patients with endometriosis has distinct gene expression profile from control endometrium without endometriosis.

Overexpression of jasmonic acid carboxyl methyltransferase increases tuber yield and size in transgenic potato

  • Sohn, Hwang-Bae;Lee, Han-Yong;Seo, Ju-Seok;Jung, Choon-Kyun;Jeon, Jae-Heung;Kim, Jeong-Han;Lee, Yin-Won;Lee, Jong-Seob;Cheong, Jong-Joo;Choi, Yang-Do
    • Plant Biotechnology Reports
    • /
    • v.5 no.1
    • /
    • pp.27-34
    • /
    • 2011
  • Jasmonates control diverse plant developmental processes, such as seed germination, flower, fruit and seed development, senescence and tuberization in potato. To understand the role of methyl jasmonate (MeJA) in potato tuberization, the Arabidopsis JMT gene encoding jasmonic acid carboxyl methyltransferase was constitutively overexpressed in transgenic potato plants. Increases in tuber yield and size as well as in vitro tuberization frequency were observed in transgenic plants. These were correlated with JMT mRNA level-- the higher expression level, the higher the tuber yield and size. The levels of jasmonic acid (JA), MeJA and tuberonic acid (TA) were also higher than those in control plants. Transgenic plants also exhibited higher expression of jasmonate-responsive genes such as those for allene oxide cyclase (AOC) and proteinase inhibitor II (PINII). These results indicate that JMT overexpression induces jasmonate biosynthesis genes and thus JA and TA pools in transgenic potatoes. This results in enhanced tuber yield and size in transgenic potato plants.

Identification of disease resistance to soft rot in transgenic potato plants that overexpress the soybean calmodulin-4 gene (GmCaM-4) (대두 칼모듈린 단백질, GmCaM-4를 발현하는 형질전환 감자의 무름병 저항성 확인)

  • Park, Hyeong Cheol;Chun, Hyun Jin;Kim, Min Chul;Lee, Sin Woo;Chung, Woo Sik
    • Journal of Plant Biotechnology
    • /
    • v.47 no.2
    • /
    • pp.157-163
    • /
    • 2020
  • Calmodulin (CaM) mediates cellular Ca2+ signals in the defense responses of plants. We previously reported that GmCaM-4 and 5 are involved in salicylic acid-independent activation of disease resistance responses in soybean (Glycine max). Here, we generated a GmCaM-4 cDNA construct under the control of the cauliflower mosaic virus (CaMV) 35S promoter and transformed this construct into potato (Solanum tuberosum L.). The constitutive over-expression of GmCaM-4 in potato induced high-level expression of pathogenesis-related (PR) genes, such as PR-2, PR-3, PR-5, phenylalanine ammonia-lyase (PAL), and proteinase inhibitorII (pinII). In addition, the transgenic potato plants exhibited enhanced resistance against a bacterial pathogen, Erwinia carotovora ssp. Carotovora (ECC), that causes soft rot disease and showed spontaneous lesion phenotypes on their leaves. These results strongly suggest that a CaM protein in soybean, GmCaM-4, plays an important role in the response of potato plants to pathogen defense signaling.