• Title/Summary/Keyword: Protein-to-protein interaction

Search Result 1,447, Processing Time 0.023 seconds

Effects of Over-dosed Lead and its Interaction with Iron, Copper, Zinc or Protein Supplement in Chicks (초생추에서의 납의 독성과 철·구리·아연 및 단백질과의 상호작용)

  • Park, Jun-hong;Kim, Chun-su
    • Korean Journal of Veterinary Research
    • /
    • v.24 no.1
    • /
    • pp.24-30
    • /
    • 1984
  • The protective effects of high levels of dietary iron, copper, zinc or protein on lead toxicity were studied In chicks. Growth retardation, reduction of feed intake, anemia and accumulation of lead in the bone and kidney were observed in chicks fed a diet containing 500mg lead as chloride per kg of feed for 42 days. Early changes due to ingested lead were inhibition of red blood cell ${\delta}$-aminolevulinic acid dehydrase at all doses and no effect of iron, copper, zinc or protein addition were observed. Tibia lead accumulation was reduced in chicks receiving additional dietary iron or zinc compared to the lead only group but increased in chicks given supplementary protein. Decreased body weight gain was overcome by supplementary zinc or protein in chicks fed lead but not by supplementary iron. Overall the results of this study show that lead poisoning can be partly reduced by providing supplementary iron, zinc or protein, but the interaction of these element remained to be elucidated.

  • PDF

Interaction of Heliothis armigera Nuclear Polyhedrosis Viral Capsid Protein with its Host Actin

  • Lu, Song-Ya;Qi, Yi-Peng;Ge, Guo-Qiong
    • BMB Reports
    • /
    • v.35 no.6
    • /
    • pp.562-567
    • /
    • 2002
  • In order to find the cellular interaction factors of the Heliothis armigera nuclear polyhedrosis virus capsid protein VP39, a Heliothis armigera cell cDNA library was constructed. Then VP39 was used as bait. The host actin gene was isolated from the cDNA library with the yeast two-hybrid system. This demonstrated that VP39 could interact with its host actin in yeast. In order to corroborate this interaction in vivo, the vp39 gene was fused with the green fluorescent protein gene in plasmid pEGFP39. The fusion protein was expressed in the Hz-AM1 cells under the control of the Autographa californica multiple nucleopolyhedrovirus immediate early gene promoter. The host actin was labeled specifically by the red fluorescence substance, tetramethy rhodamine isothicyanete-phalloidin. Observation under a fluorescence microscopy showed that VP39, which was indicated by green fluorescence, began to appear in the cells 6 h after being transfected with pEGFP39. Red actin cables were also formed in the cytoplasm at the same time. Actin was aggregated in the nucleus 9 h after the transfection. The green and red fluorescence always appeared in the same location of the cells, which demonstrated that VP39 could combine with the host actin. Such a combination would result in the actin skeleton rearrangement.

Protein-protein Interaction Analysis of Glucagon-like Peptide-2 Receptor with Its Native Ligand Glucagon-like Peptide-2

  • Nagarajan, Santhosh Kumar
    • Journal of Integrative Natural Science
    • /
    • v.10 no.3
    • /
    • pp.125-130
    • /
    • 2017
  • Glucagon like pepide-2, one of the GLPs, is involved in various metabolic functions in the gastrointestinal tract. It plays a major role in the regulation of mucosal epithelium and the intestinal crypt cell proliferation. Because of their therapeutic importance towards the diseases in the gastrointestinal tract, it becomes necessary to study their interaction with its receptor, GLP-2R. In this study, we have developed protein-protein docking complexes of GLP-2 - GLP-2 receptor. Homology models of GLP-2 are developed, and a reliable model out of the predicted models was selected after model validation. The model was bound with the receptor, to study the important interactions of the complex. This study could be useful in developing novel and potent drugs for the diseases related with GLP-2.

Identification of Diseasomal Proteins from Atopy-Related Disease Network (아토피관련 질병 네트워크로부터 질병단백체 발굴)

  • Lee, Yoon-Kyeong;Yeo, Myeong-Ho;Kang, Tae-Ho;Yoo, Jae-Soo;Kim, Hak-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.4
    • /
    • pp.114-120
    • /
    • 2009
  • In this study, we employed the idea that disease-related proteins tend to be work as an important factor for architecture of the disease network. We initially obtained 43 atopy-related proteins from the Online Mendelian Inheritance in Man (OMIM) and then constructed atopy-related protein interaction network. The protein network can be derived the map of the relationship between different disease proteins, denoted disease interaction network. We demonstrate that the associations between diseases are directly correlated to their underlying protein-protein interaction networks. From constructed the disease-protein bipartite network, we derived three diseasomal proteins, CCR5, CCL11, and IL/4R. Although we use the relatively small subnetwork, an atopy-related disease network, it is sufficient that the discovery of protein interaction networks assigned by diseases will provide insight into the underlying molecular mechanisms and biological processes in complex human disease system.

Optical detection of protein patterns using 1,3-bisdicyanovinylindane (1,3-bisdicyanovinylindane을 이용한 단백질 패터닝의 광학적 감지)

  • Park, Young-Min;Lee, Ji-Hye;Lee, Chang-Soo;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.19 no.4
    • /
    • pp.32-37
    • /
    • 2007
  • In this study, we have obtained the protein patterns using the membrane patterning of soft-lithography technique. The rapid detection of protein including bovine serum albumin (BSA) was resulted from the interaction with 1,3-bisdicyanovinylindane. For the proof of the interaction between BSA and dye, the UV-vis absorption spectra of BSA and dye were observed at 278 nm and 580 nm, respectively. As expected, the absorption spectrum of the interaction between BSA and dye was observed at 584nm. The absorption spectrum of the interaction was red-shifted. In addition, the optical images of the selectively reacted protein patterns showed the distinctive change of patterned color at different pH conditions. Because the dye has negative charges, the charge of BSA at different pH conditions could influence the interaction behavior between dye and BSA. Therefore, in the case of pH 7, the selectively patterned protein substrates obtained deep blue color pattern caused by electrostatic interaction between negative charges of the dye and positive charges of the BSA. However, in the case of pH 10, selectively patterned protein substrates obtained light blue color pattern because the electrostatic interaction was relatively lower than pH 7 due to the change of overall charge distribution of BSA.

Use of the Yeast 1.5-Hybrid System to Detect DNA-Protein-Protein Interaction

  • Kim, Sook-Kyung;Han, Jin-Hee
    • Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.113-116
    • /
    • 2000
  • Escherichia coli F plasmid partition apparatus is composed of two trans-acting proteins (SopA and SopB) and one cis-acting DNA sequence (sopC). The SopB-sopC complex has been suggested to serve a centromere-like function through its interaction with chromosomally encoded proteins which remain to be identified. In this paper, we are introducing a new yeast 1.5-hybrid system which assembles the two-hybrid and one-hybrid system as a mean to find and additional component of the F plasmid partition system, interacting with DNA (sopC)-bound SopB protein. The results indicates that this system is a promising one, capable of selecting an interacting component.

  • PDF

Small Molecules Targeting for ESX-Sur2 Proteins' Interaction

  • Kwon, Young-Joo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2008.04a
    • /
    • pp.77-86
    • /
    • 2008
  • It's been known that overexpression of the oncoprotein Her2 (eu/ErbB2), transmembrane receptor protein, occurs in human breast cancer. Her2-positive breast cancer patients who have Her2 overexpression show less therapeutic efficacy with enhanced metathesis and increased resistance to chemotherapy. So far, a humanized monoclonal antibody against Her2 protein called Herceptin is the only drug approved by Food and Drug Administration for treatment of Her2-overexpressing breast tumors. However, antibody therapy of Herceptin may not be ideal method for therapeutic intervention of Her2 protein expression. The therapeutic intervention of Her2 protein expression may be more efficiently achieved by inhibiting the expression of Her2 gene rather than by down-regulating the Her2 protein already overexpressed. Here, we found that the interaction of two proteins of ESX (an epithelial-restricted transcription factor) and DRIP130/CRSP130/Sur2 (a Ras-linked subunit of human mediator complexes) mediates the expression of Her2 gene. The association of ESX with Sur2 is mediated by a small hydrophobic face of 8-amino acid helix in ESX, suggesting that the ESX-Sur2 interaction can be a new novel target for Her2-positive cancer. The process to develop potent ESX-Sur2 interaction inhibitors targeting for Her2-positive cancer therapeutics will be discussed.

  • PDF

Shortest Path Analyses in the Protein-Protein Interaction Network of NGAL (Neutrophil Gelatinase-associated Lipocalin) Overexpression in Esophageal Squamous Cell Carcinoma

  • Du, Ze-Peng;Wu, Bing-Li;Wang, Shao-Hong;Shen, Jin-Hui;Lin, Xuan-Hao;Zheng, Chun-Peng;Wu, Zhi-Yong;Qiu, Xiao-Yang;Zhan, Xiao-Fen;Xu, Li-Yan;Li, En-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6899-6904
    • /
    • 2014
  • NGAL (neutrophil gelatinase-associated lipocalin) is a novel cancer-related protein involves multiple functions in many cancers and other diseases. We previously overexpressed NGAL to analyze its role in esophageal squamous cell carcinoma (ESCC). In this study, a protein-protein interaction (PPI) was constructed and the shortest paths from NGAL to transcription factors in the network were analyzed. We found 28 shortest paths from NGAL to RELA, most of them obeying the principle of extracellular to cytoplasm, then nucleus. These shortest paths were also prioritized according to their normalized intensity from the microarray by the order of interaction cascades. A systems approach was developed in this study by linking differentially expressed genes with publicly available PPI data, Gene Ontology and subcellular localizaton for the integrated analyses. These shortest paths from NGAL to DEG transcription factors or other transcription factors in the PPI network provide important clues for future experimental identification of new pathways.

A Protein-Protein Interaction Extraction Approach Based on Large Pre-trained Language Model and Adversarial Training

  • Tang, Zhan;Guo, Xuchao;Bai, Zhao;Diao, Lei;Lu, Shuhan;Li, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.771-791
    • /
    • 2022
  • Protein-protein interaction (PPI) extraction from original text is important for revealing the molecular mechanism of biological processes. With the rapid growth of biomedical literature, manually extracting PPI has become more time-consuming and laborious. Therefore, the automatic PPI extraction from the raw literature through natural language processing technology has attracted the attention of the majority of researchers. We propose a PPI extraction model based on the large pre-trained language model and adversarial training. It enhances the learning of semantic and syntactic features using BioBERT pre-trained weights, which are built on large-scale domain corpora, and adversarial perturbations are applied to the embedding layer to improve the robustness of the model. Experimental results showed that the proposed model achieved the highest F1 scores (83.93% and 90.31%) on two corpora with large sample sizes, namely, AIMed and BioInfer, respectively, compared with the previous method. It also achieved comparable performance on three corpora with small sample sizes, namely, HPRD50, IEPA, and LLL.

Photo-induced inter-protein interaction changes in the time domain; a blue light sensor protein PixD

  • Terazima, Masahide
    • Rapid Communication in Photoscience
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • For understanding molecular mechanisms of photochemical reactions, in particular reactions of proteins with biological functions, it is important to elucidate both the initial reactions from the photoexcited states and the series of subsequent chemical reactions, e.g., conformation, intermolecular interactions (hydrogen bonding, hydrophobic interactions), and inter-protein interactions (oligomer formation, dissociation reactions). Although time-resolved detection of such dynamics is essential, these dynamics have been very difficult to track by traditional spectroscopic techniques. Here, relatively new approaches for probing the dynamics of protein photochemical reactions using time-resolved transient grating (TG) are reviewed. By using this method, a variety of spectrally silent dynamics can be detected and such data provide a valuable description about the reaction scheme. Herein, a blue light sensor protein TePixD is the exemplar. The initial photochemistry for TePixD occurs around the chromophore and is detected readily by light absorption, but subsequent reactions are spectrally silent. The TG experiments revealed conformational changes and changes in inter-protein interactions, which are essential for TePixD function. The TG experiments also showed the importance of fluctuations of the intermediates as the driving force of the reaction. This technique is complementary to optical absorption detection methods. The TG signal contains a variety of unique information, which is difficult to obtain by other methods. The advantages and methods for signal analyses are described in detail in this review.