1 |
T. J. Kiefer and J. F. Habener, "The glucagon-like peptides", Endocrine Reviews, Vol. 20, pp. 876-913, 1999.
DOI
|
2 |
J. L. Estall and D. J. Drucker, "Glucagon and glucagon-like peptide receptors as drug targets", Curr. Pharm. Des., Vol. 12, pp. 1731-1750, 2006.
DOI
|
3 |
D. J. Drucker, "Glucagon-like peptides", Diabetes, Vol. 47, pp. 159-169, 1998.
DOI
|
4 |
P. J. Hornby and B. A. Moore, "The therapeutic potential of targeting the glucagon-like peptide-2 receptor in gastrointestinal disease", Expert Opin. Ther. Targets, Vol. 15, pp. 637-646, 2011.
DOI
|
5 |
B. Yusta, R. P. Boushey, and D. J. Drucker, "The Glucagon-like peptide-2 receptor mediates direct inhibition of cellular apoptosis via a cAMP-dependent protein kinase-independent pathway", J. Biol. Chem., Vol. 275, pp. 35345-35352, 2000.
DOI
|
6 |
D. J. Drucker, P. Erlich, S. L. Asa, and P. L. Brubaker, "Induction of intestinal epithelial proliferation by glucagon-like peptide 2", Proc. Nati. Acad. Sci. U. S. A., Vol. 93, pp. 7911-7916, 1996
DOI
|
7 |
S. Schlyer and R. Horuk, "I want a new drug: Gprotein-coupled receptors in drug development", Drug Discov. Today, Vol. 11, pp. 481-493, 2006.
DOI
|
8 |
G. C. Baker, J. J. Smith, and D. A. Cowan, "Review and re-analysis of domain-specific 16S primers", J. Microbiol. Methods, Vol. 55, pp. 541-555, 2003.
DOI
|
9 |
D. Xu and Y. Zhang, "Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field", Proteins, Vol. 80, pp. 1715-1735, 2012.
|
10 |
Y. Shen, J. Maupetit, P. Derreumaux, and P. Tuffery, "Improved PEP-FOLD approach for peptide and miniprotein structure prediction", J. Chem. Theory Comput., Vol. 10 pp. 4745-4758, 2014.
DOI
|
11 |
S. C. Lovell, I. W. Davis, W. B. Arendall III, P. I. W. de Bakker, J. M. Word, M. G. Prisant, J. S. Richardson, and D. C. Richardson, "Structure validation by geometry: , and deviation", Proteins, Vol. 50, pp. 437-450, 2002.
|
12 |
C. Colovos and T. O. Yeates, "Verification of protein structures: patterns of nonbonded atomic interactions", Protein Sci., Vol. 2, pp. 1511-1519, 1993.
DOI
|
13 |
G. Studer, M. Biasini, and T. Schwede, "Assessing the local structural quality of transmembrane protein models using statistical potentials (QMEANBrane)", Bioinformatics, Vol. 30 pp. i505-i511, 2014.
DOI
|
14 |
S. Comeau, D. W. Gatchell, S. Vajda, and C. J. Camacho, "ClusPro: an automated docking and discrimination method for the prediction of protein complexes", Bioinformatics, Vol. 20, pp. 45-50, 2004.
DOI
|
15 |
S. R. Comeau, D. W. Gatchell, S. Vajda, C. J. Camacho, "ClusPro: a fully automated algorithm for proteinprotein docking", Nucleic Acids Res., Vol. 32, pp. 96-99, 2004.
|
16 |
D. Kozakov, D. Beglov, T. Bohnuud, S. E. Mottarella, B. Xia, D. R. Hall, and S. Vajda, "How good is automated protein docking?", Proteins, Vol. 81, pp. 2159-2166, 2013.
DOI
|
17 |
M. F. Lensink and S. Wodak, "Docking, scoring, and affinity prediction in CAPRI", Proteins, Vol. 81, pp. 2082-2095, 2013.
DOI
|
18 |
D. Kozakov, R. Brenke, S. R. Comeau, and S. Vajda, "PIPER: An FFT-based protein docking program with pairwise potentials", Proteins, Vol. 65, pp. 392-406, 2006.
DOI
|