• Title/Summary/Keyword: Protein-based

Search Result 4,481, Processing Time 0.032 seconds

Protein Motif Extraction via Feature Interval Selection

  • Sohn, In-Suk;Hwang, Chang-Ha;Ko, Jun-Su;Chiu, David;Hong, Dug-Hun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1279-1287
    • /
    • 2006
  • The purpose of this paper is to present a new algorithm for extracting the consensus pattern, or motif from sequence belonging to the same family. Two methods are considered for feature interval partitioning based on equal probability and equal width interval partitioning. C2H2 zinc finger protein and epidermal growth factor protein sequences are used to demonstrate the effectiveness of the proposed algorithm for motif extraction. For two protein families, the equal width interval partitioning method performs better than the equal probability interval partitioning method.

  • PDF

Effect of Carbon Tetrachloride on the Changes of Guanase Activity in-Rats Fed Low or High Proteins Diet (食餌性 蛋白質含量에 따른 흰쥐에 사염화탄소 投與가 Guanase 活性變動에 미치는 영향)

  • Kang, Hoe-Yang
    • Journal of Environmental Health Sciences
    • /
    • v.14 no.1
    • /
    • pp.87-101
    • /
    • 1988
  • The effect of hepatic injury produced by CCL, was studied on rats receiving a low protein-high carbohydrate (7% casein), standard protein (20% casein) and a high protein diet (30% casein). The rats fed low protein diet are resistant to CCl$_4$ in its effects on the liver as judged by histology, serum enzymes(guanase, ALT) and the content of hepatic protein. On the other hand, the pretreatment of hydrocortisone before injection of CCl$_4$ to the rats fed a standard diet, slightly decreased both serum ALT and guanase activities. In the pretreatment of actinomycin D, the liver and serum guanase activities were significantly decreased. It indicates that the cause of increasing serum guanase is based on the alteration of membrane permeability and the result of accelerated enzyme synthesis in liver cells of CCl$_4$ intoxicated rats.

  • PDF

Adverse Interfacial Effects upon Protein Stability: Implications in Developing Emulsion-Based Protein Delivery Systems

  • Sah, Hongkee
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.146-148
    • /
    • 2001
  • The objective of this study was to investigate the behavior of ribonuclease A (RNase) at the water/methylene chloride interface. It was aimed at better understanding the denaturation of proteins upon emulsification. RNase was vulnerable to the interface-induced aggregation reactions that led to formation of water-insoluble aggregates upon emulsification. Biochemical analyses demonstrated that intermolecular covalent linkages might have been involved in the aggregation reactions. The protein instability observed with emulsification was traced to consequences of protein adsorption and conformational rearrangements at the interface. These results indicated that emulsifying aqueous protein solutions in organic solvents should be handled with care, since emulsification could bring denaturation and aggregation to proteins.

  • PDF

GSnet: An Integrated Tool for Gene Set Analysis and Visualization

  • Choi, Yoon-Jeong;Woo, Hyun-Goo;Yu, Ung-Sik
    • Genomics & Informatics
    • /
    • v.5 no.3
    • /
    • pp.133-136
    • /
    • 2007
  • The Gene Set network viewer (GSnet) visualizes the functional enrichment of a given gene set with a protein interaction network and is implemented as a plug-in for the Cytoscape platform. The functional enrichment of a given gene set is calculated using a hypergeometric test based on the Gene Ontology annotation. The protein interaction network is estimated using public data. Set operations allow a complex protein interaction network to be decomposed into a functionally-enriched module of interest. GSnet provides a new framework for gene set analysis by integrating a priori knowledge of a biological network with functional enrichment analysis.

Fast Protein Staining in Sodium Dodecyl Sulfate Polyacrylamide Gel using Counter ion-Dyes, Coomassie Brilliant Blue R-250 and Neutral Red

  • Choi, Jung-Kap;Yoo, Gyurng-Soo
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.704-708
    • /
    • 2002
  • A fast and sensitive protein staining method in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) using both an acidic dye, Coomassie Brilliant Blue R-250 (CBBR) and a basic dye, Neutral Red (NR) is described. It is based on a counter ion-dye staining technique that employs oppositely charged two dyes to form an ion-pair complex. The selective binding of the free dye molecules to proteins in an acidic solution enhances the staining effect of CBBR on protein bands, and also reduces gel background. It is a rapid staining procedure, involving fixing and staining steps with short destaining that are completed in about 1 h. As the result, it showed two to fourfold increase in sensitivity comparing with CBBR staining. The stained protein bands can be visualized at the same time of staining.

A Study of Protein Ion Exchange Chromatography based on Plate Theory (단이론에 따른 단백질 이온교환 크로마토그라피의 연구)

  • 김인호;김진태
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.4
    • /
    • pp.485-491
    • /
    • 1995
  • Protein ion exchange chromatography was studied experimentally in order to prove the theoretical prediction from the linear model of Yamamoto, S. et al (1). Adsorption isotherms were measured as a function of ionic strength in a batch experiment. The relationship between the characteristics of chromatogram and the operating conditions of ionic strength, flow rate, length of column, concentration and amount of protein sample were studied. At the higher ionic strength, the lower flow rate and the longer column conditions, the higher number of plate was obtained. Satisfactory agreement was observed between the experimental and the calculated chromatograms except for the case of high protein concentration.

  • PDF

Exploring Fine Structures of Photoactive Yellow Protein in Solution Using Wide-Angle X-ray Scattering

  • Kim, Tae-Kyu;Zuo, Xiaobing;Tiede, David M.;Ihee, Hyot-Cherl
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.11
    • /
    • pp.1676-1680
    • /
    • 2004
  • We demonstrate that wide-angle X-ray scattering pattern from photoactive yellow protein (PYP) in solution using a high flux third generation synchrotron X-ray source reflects not only the overall structure, but also fine structures of the protein. X-ray scattering data from PYP in solution have been collected in q ranges from 0.02 ${\AA}^{-1}$ to 2.8 ${\AA}^{-1}$. These data are sensitive to the protein structure and consistent with the calculation based on known crystallographic atomic coordinates. Theoretical scattering patterns were also calculated for the intermediates during the photocycle of PYP to estimate the feasibility of time-resolved wide-angle X-ray scattering experiments on such proteins. These results demonstrate the possibility of using the wide-angle solution X-ray scattering as a quantitative monitor of photo-induced structural changes in PYP.

Flavonoids as Novel Therapeutic Agents Against Chikungunya Virus Capsid Protein: A Molecular Docking Approach

  • E. Vadivel;Gundeep Ekka;J. Fermin Angelo Selvin
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.4
    • /
    • pp.226-235
    • /
    • 2023
  • Chikungunya fever has a high morbidity rate in humans and is caused by chikungunya virus. There are no treatments available until now for this particular viral disease. The present study was carried out by selecting 19 flavonoids, which are available naturally in fruits, vegetables, tea, red wine and medicinal plants. The molecular docking of selected 19 flavonoids was carried out against the Chikungunya virus capsid protein using the Autodock4.2 software. Binding affinity analysis based on the Intermolecular interactions such as Hydrogen bonding and hydrophobic interactions and drug-likeness properties for all the 19 flavonoids have been carried out and it is found that the top four molecules are Chrysin, Fisetin, Naringenin and Biochanin A as they fit to the chikungunya protein and have binding energy of -8.09, -8.01, -7.6, and 7.3 kcal/mol respectively. This result opens up the possibility of applying these compounds in the inhibition of chikungunya viral protein.

Manufacturing Protein-DNA Chip for Depigmenting Agent Screening (전사인자 저해제 통한 미백제 탐색용 단백질 칩 제작)

  • Han Jung-Sun;Kwak Eun-Young;Lee Hyang-Bok;Shin Jlung-Hyun;Baek Seung-Hak;Chung Bong-Hyun;Kim Eun-Ki
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.4 s.48
    • /
    • pp.479-483
    • /
    • 2004
  • An attempt was made to develop a proteinchip for screening of MITF (microphthalmia transcription factor) inhibitor. Binding of MITF to E-box causes transcription of several pigmenting genes including tyrosinase gene. We investigated binding of MITF and its DNA binding site (E-box) using a protein-DNA chip with various detection methods including flurorescence (Cyt3). SPR (surface plasmon resonance) and SPRi (surface plasmon resonance imaging). A fusion protein (MITF-Maltose Binding Protein) was attached on the glass plate by chemical modification. An inhibitory synthetic DNA oligomer, artificially designed based on the E-box sequence, inhibited the binding of MITF and E-box. These results showed the potentials of flurorescence-based MITF protein chip as a microarray for high throughput screening (HTS) system of depigmenting agents.