• 제목/요약/키워드: Protein structure prediction

검색결과 105건 처리시간 0.018초

Enhanced Chemical Shift Analysis for Secondary Structure prediction of protein

  • Kim, Won-Je;Rhee, Jin-Kyu;Yi, Jong-Jae;Lee, Bong-Jin;Son, Woo Sung
    • 한국자기공명학회논문지
    • /
    • 제18권1호
    • /
    • pp.36-40
    • /
    • 2014
  • Predicting secondary structure of protein through assigned backbone chemical shifts has been used widely because of its convenience and flexibility. In spite of its usefulness, chemical shift based analysis has some defects including isotopic shifts and solvent interaction. Here, it is shown that corrected chemical shift analysis for secondary structure of protein. It is included chemical shift correction through consideration of deuterium isotopic effect and calculate chemical shift index using probability-based methods. Enhanced method was applied successfully to one of the proteins from Mycobacterium tuberculosis. It is suggested that correction of chemical shift analysis could increase accuracy of secondary structure prediction of protein and small molecule in solution.

Prediction of Protein Secondary Structure Content Using Amino Acid Composition and Evolutionary Information

  • Lee, So-Young;Lee, Byung-Chul;Kim, Dong-Sup
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2004년도 The 3rd Annual Conference for The Korean Society for Bioinformatics Association of Asian Societies for Bioinformatics 2004 Symposium
    • /
    • pp.244-249
    • /
    • 2004
  • There have been many attempts to predict the secondary structure content of a protein from its primary sequence, which serves as the first step in a series of bioinformatics processes to gain knowledge of the structure and function of a protein. Most of them assumed that prediction relying on the information of the amino acid composition of a protein can be successful. Several approaches expanded the amount of information by including the pair amino acid composition of two adjacent residues. Recent methods achieved a remarkable improvement in prediction accuracy by using this expanded composition information. The overall average errors of two successful methods were 6.1% and 3.4%. This work was motivated by the observation that evolutionarily related proteins share the similar structure. After manipulating the values of the frequency matrix obtained by running PSI-BLAST, inputs of an artificial neural network were constructed by taking the ratio of the amino acid composition of the evolutionarily related proteins with a query protein to the background probability. Although we did not utilize the expanded composition information of amino acid pairs, we obtained the comparable accuracy, with the overall average error being 3.6%.

  • PDF

Computational approaches for molecular characterization and structure-based functional elucidation of a hypothetical protein from Mycobacterium tuberculosis

  • Abu Saim Mohammad, Saikat
    • Genomics & Informatics
    • /
    • 제21권2호
    • /
    • pp.25.1-25.12
    • /
    • 2023
  • Adaptation of infections and hosts has resulted in several metabolic mechanisms adopted by intracellular pathogens to combat the defense responses and the lack of fuel during infection. Human tuberculosis caused by Mycobacterium tuberculosis (MTB) is the world's first cause of mortality tied to a single disease. This study aims to characterize and anticipate potential antigen characteristics for promising vaccine candidates for the hypothetical protein of MTB through computational strategies. The protein is associated with the catalyzation of dithiol oxidation and/or disulfide reduction because of the protein's anticipated disulfide oxidoreductase properties. This investigation analyzed the protein's physicochemical characteristics, protein-protein interactions, subcellular locations, anticipated active sites, secondary and tertiary structures, allergenicity, antigenicity, and toxicity properties. The protein has significant active amino acid residues with no allergenicity, elevated antigenicity, and no toxicity.

단백질 서열의 상동 관계를 가중 조합한 단백질 이차 구조 예측 (Prediction of Protein Secondary Structure Using the Weighted Combination of Homology Information of Protein Sequences)

  • 지상문
    • 한국정보통신학회논문지
    • /
    • 제20권9호
    • /
    • pp.1816-1821
    • /
    • 2016
  • 단백질은 대부분의 생물학적 과정에서 중대한 역할을 수행하고 있으므로, 단백질 진화, 구조와 기능을 알아내기 위하여 많은 연구가 수행되고 있는데, 단백질의 이차 구조는 이러한 연구의 중요한 기본적 정보이다. 본 연구는 대규모 단백질 구조 자료로부터 단백질 이차 구조 정보를 효과적으로 추출하여 미지의 단백질 서열이 가지는 이차 구조를 예측하려 한다. 질의 서열과 상동관계에 있는 단백질 구조자료내의 서열들을 광범위하게 찾아내기 위하여, 탐색에 사용하는 프로파일의 구성에 질의 서열과 유사한 서열들을 사용하고 갭을 허용하여 반복적인 탐색이 가능한 PSI-BLAST를 사용하였다. 상동 단백질들의 이차구조는 질의 서열과의 상동 관계의 강도에 따라 가중되어 이차 구조 예측에 기여되었다. 이차 구조를 각각 세 개와 여덟 개로 분류하는 예측 실험에서 상동 서열들과 신경망을 동시에 사용하여 93.28%와 88.79%의 정확도를 얻어서 기존 방법보다 성능이 향상되었다.

단백질 이차 구조 예측을 위한 합성곱 신경망의 구조 (Architectures of Convolutional Neural Networks for the Prediction of Protein Secondary Structures)

  • 지상문
    • 한국정보통신학회논문지
    • /
    • 제22권5호
    • /
    • pp.728-733
    • /
    • 2018
  • 단백질을 구성하는 아미노산의 서열 정보만으로 단백질 이차 구조를 예측하기 위하여 심층 학습이 활발히 연구되고 있다. 본 논문에서는 단백질 이차 구조를 예측하기 위하여 다양한 구조의 합성곱 신경망의 성능을 비교하였다. 단백질 이차 구조의 예측에 적합한 신경망의 층의 깊이를 알아내기 위하여 층의 개수에 따른 성능을 조사하였다. 또한 이미지 분류 분야의 많은 방법들이 기반 하는 GoogLeNet과 ResNet의 구조를 적용하였는데, 이러한 방법은 입력 자료에서 다양한 특성을 추출하거나, 깊은 층을 사용하여도 학습과정에서 그래디언트 전달을 원활하게 한다. 합성곱 신경망의 여러 구조를 단백질 자료의 특성에 적합하게 변경하여 성능을 향상시켰다.

Simulation Methods for Prediction of Membrane Protein Structure

  • Son, Hyeon-S.
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1998년도 학술발표회
    • /
    • pp.10-10
    • /
    • 1998
  • IMPs are important to cells in functions such as transport, energy transduction and signalling. Three dimensional molecular structures of such proteins at atomic level are needed to understand such processes. Prediction of such structures (and functions) is necessary especially because there are only a small number of membrane protein structures determined in atomic resolution.(omitted)

  • PDF

MOTIF BASED PROTEIN FUNCTION ANALYSIS USING DATA MINING

  • Lee, Bum-Ju;Lee, Heon-Gyu;Ryu, Keun-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.812-815
    • /
    • 2006
  • Proteins are essential agents for controlling, effecting and modulating cellular functions, and proteins with similar sequences have diverged from a common ancestral gene, and have similar structures and functions. Function prediction of unknown proteins remains one of the most challenging problems in bioinformatics. Recently, various computational approaches have been developed for identification of short sequences that are conserved within a family of closely related protein sequence. Protein function is often correlated with highly conserved motifs. Motif is the smallest unit of protein structure and function, and intends to make core part among protein structural and functional components. Therefore, prediction methods using data mining or machine learning have been developed. In this paper, we describe an approach for protein function prediction of motif-based models using data mining. Our work consists of three phrases. We make training and test data set and construct classifier using a training set. Also, through experiments, we evaluate our classifier with other classifiers in point of the accuracy of resulting classification.

  • PDF

A QUADRATIC APPROXIMATION FOR PROTEIN SEQUENCE TO STRUCTURE MAPPING

  • Oh, Se-Young;Yun, Jae-Heon;Chung, Sei-Young
    • Journal of applied mathematics & informatics
    • /
    • 제12권1_2호
    • /
    • pp.155-164
    • /
    • 2003
  • A method is proposed to predict the distances between given residue pairs (between C$\sub$${\alpha}$/ atoms) of a protein using a sequence to structure mapping by indefinite quadratic approximation. The prediction technique requires a data fitting in three dimensional space with coordinates of the residues of known structured proteins and leads to a numerical ref resentation of 20 amino acids by minimizing a large least norm iteratively. These approximations are used in distance prediction for given residue pairs. Some computational experience on a test set of small proteins from Brookhaven Protein Data Bank are given.

Protein Secondary Structure Prediction using Multiple Neural Network Likelihood Models

  • Kim, Seong-Gon;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권4호
    • /
    • pp.314-318
    • /
    • 2010
  • Predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure is a complex non-linear task that has been approached by several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods. This project introduces a new machine learning method by combining Bayesian Inference with offline trained Multilayered Perceptron (MLP) models as the likelihood for secondary structure prediction of proteins. With varying window sizes of neighboring amino acid information, the information is extracted and passed back and forth between the Neural Net and the Bayesian Inference process until the posterior probability of the secondary structure converges.

Theoretical Investigations on Structure and Function of Human Homologue hABH4 of E.coli ALKB4

  • Shankaracharya, Shankaracharya;Das, Saibal;Prasad, Dinesh;Vidyarthi, Ambarish Sharan
    • Interdisciplinary Bio Central
    • /
    • 제2권3호
    • /
    • pp.8.1-8.5
    • /
    • 2010
  • Introduction: Recently identified human homologues of ALKB protein have shown the activity of DNA damaging drugs, used for cancer therapy. Bioinformatics study of hABH2 and hABH3 had led to the discovery of a novel DNA repair mechanism. Very little is known about structure and function of hABH4, one of the members of this superfamily. Therefore, in present study we are intended to predict its structure and function through various bioinformatics tools. Materials and Methods: Modeling was done with modeler 9v7 to predict the 3D structure of the hABH4 protein. This model was validated with the program Procheck using Ramachandran plot statistics and was submitted to PMDB with ID PM0076284. The 3d2GO server was used to predict the functions. Residues at protein ligand and protein RNA binding sites were predicted with 3dLigandSite and KYG programs respectively. Results and Discussion: 3-D model of hABH4, ALKBH4.B99990003.pdb was predicted and evaluated. Validation result showed that 96.4 % residues lies in favored and additional allowed region of Ramachandran plot. Ligand binding residues prediction showed four Ligand clusters, having 24 ligands in cluster 1. Importantly, conserved pattern of Glu196-X-Pro198- Xn-His254 in the functional domain was detected. DNA and RNA binding sites were also predicted in the model. Conclusion and Prospects: The predicted and validated model of human homologue hABH4 resulted from this study may unveil the mechanism of DNA damage repair in human and accelerate the research on designing of appropriate inhibitors aiding in chemotherapy and cancer related diseases.