• Title/Summary/Keyword: Protein polymorphism

Search Result 359, Processing Time 0.03 seconds

Totipotential, Morphological, Biochemical Comparisons between Nonembryogenic Callus and Embryogenic Callus in Water Dropwort(Oenanthe stolonifera DC) (미나리에서 비배발생캘러스와 배발생캘러스간의 분화능력 및 해부학적, 생화학적 특성비교)

  • 빈철구;김병동
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.3
    • /
    • pp.167-173
    • /
    • 1997
  • The embryogenic callus (EC), from which somatic embryos could be induced, was compared with nonembryogenic callus(NE) to study the origin and features of totipotent cell in water dropwort (Oenanthe stolonifera DC). To induce and maintain of EC and the NE, meristematic stem and immature floret were inoculated in MS media supplemented with 1 mg/L 2,4-D, and with 2.5 mg/L NAA and 5mg/L BA, respectively, The EC was not induced from the NE even after subculturing in MS medium supplemented with 1 mg/L 2,4-D. Plantlets were not regenerated from the NE in hormone-free medium. In histochemical comparison of the EC with the NE by light microscopy, the EC had smaller cells in size, dense cytoplasm, and more starch granules of cells compared to the NE cells. The cell from the EC, as observed by transmission electron microscopy, had smaller vaculoes, well developed ribosomes, mitochondria, and endoplasmic reticulum, whereas the cells from the NE had larger vacuoles and underdeveloped organelles. In protein pattern from NE, EC and Somatic embryo (SE), as analyzed by SDS polyacrylamide gel electrophoresis, different proteins specific for tissue were observed: 17 and 28 KD for NE, 50, 52, 57, 66, 68 KD for EC and 20 KD for SE. DNA polymorphism was also observed between EC and NE as analyzed by RAPD (randomly amplified polymorphic DNA) method. The origin of totipotent stem cell and the relationship between irreversible genomic change arose in differentiation and the loss of totipotency in plant were discussed.

  • PDF

Effects of Sodium Intake on the Association between the Salt-Sensitive Gene, Alpha-Adducin 1 (ADD1), and Inflammatory Cytokines in the Prevalence of Children Obesity

  • Park, Mi-Young;Lee, Myoung-sook
    • Journal of Lipid and Atherosclerosis
    • /
    • v.7 no.2
    • /
    • pp.98-109
    • /
    • 2018
  • Objective: To examine the effects of sodium intake on the correlations between the saltsensitive gene ${\alpha}$-adducin 1 (ADD1) and inflammatory cytokines in Korean childhood obesity. Methods: A total of 2,070 students aged 8-9 years old participated in this study. The anthropometrics, serum biochemistry profile, inflammatory cytokines, and three-day dietary assessment were analyzed according to sex, obesity degree, and ADD1 polymorphism. Results: The obesity prevalence was higher in boys (15.6%) than in girls (11.9%). Boys also showed higher values in anthropometrics; lipid, glucose, and insulin profiles; total calorie intakes, as well as those of sodium and calcium compared with those of the girls. The more obese were boys and girls, the higher were the anthropometrics and the blood levels (total cholesterol, triglyceride, low-density lipoprotein cholesterol, fasting blood sugar, and insulin), but the lower was high-density lipoprotein cholesterol. The obese boys had significantly higher sodium and Na/K intakes, while the obese girls had higher visfatin level and Na/K intake. In addition, an increase in the risk factors for blood pressure and obesity in ADD1 variants was identified. Serum tumor necrosis $factor-{\alpha}$($TNF-{\alpha}$) significantly increased with increasing sodium intake in the ADD1 W allele carriers, regardless of sex. The presence of obesity with the ADD1 W allele induced inflammatory accelerators such as $TNF-{\alpha}$ or C-reactive protein(CRP) with higher sodium intake. Conclusion: Obese children with an ADD1w allele can experience a more complex form of obesity than non-obese when exposed to an obesity-inducing environment and need to be controlled sodium intake in the diet.

Replication Association Study between RBC Indices and Genetic Variants in Korean Population

  • Lee, Sang In;Park, Sangjung;Jin, Hyun-Seok
    • Biomedical Science Letters
    • /
    • v.25 no.2
    • /
    • pp.190-195
    • /
    • 2019
  • Hemoglobin (Hb) concentrations and hematocrit (Hct) values can be changed by factors such as erythrocyte production, destruction, and bleeding. In addition, variants in the protein expression involved in the amount of red blood cells that determine Hb metabolism or Hct value can increase susceptibility to complex blood diseases. Previous studies have reported significant single nucleotide polymorphisms (SNPs) by applying a genome-wide association study (GWAS) on Hb levels and Hct values in European population. In this study, we confirmed whether the significant SNPs are replicated in Koreans. In previous studies, 26 and 18 SNPs with a significant correlation Hb and Hct were identified in Korean genotype data, and 21 and 12 SNPs were selected, respectively. The SNPs of PRKCE (rs10495928), TMPRSS6 (rs2235321, rs5756505, rs855791) were significantly associated with Hb (P<0.05). In the association analysis of Hct, the SNPs of HBS1L (rs6920211, rs9389268, rs9483788), PRKCE (rs4953318), SCGN (rs9348689) and TMPRSS6 (rs2413450) genes showed a significant correlation (P<0.05). Replicated SNPs and not replicated SNPs showed the difference of genetic distance calculated by Fst. The replicated SNPs with a significant correlation showed similar allele frequencies, whereas the not replicated SNPs showed a large difference in allele frequency. All replicated SNPs with significant correlations had Fst values less than 0.05, indicating that the genetic distance between the groups was close. On the other hand, the not replicated SNPs showed that the Fst value was 0.05 or more and the genetic distance was relatively large.

Genomics Approach to Identify the Cause of the Missing Omega-5 Gliadin Protein in O-Free Wheat

  • Lee, Yun Gyeong;Choi, Sang Chul;Kang, Yuna;Kang, Chon-Sik;Kim, Changsoo
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.413-425
    • /
    • 2018
  • A previous work developed and identified a new omega-5 gliadin deficient wheat line named O-free by crossing Keumkang and Olgeuru, which is nutritionally quite meaningful in that omega-5 gliadin is one of the known wheat allergens. To verify the characteristics of the O-free, we performed RNA sequencing (RNAseq) analysis of the O-free and the two parent lines (Keumkang and Olgeuru). The results of the similarity analysis with the ESTs for gliadins and glutenins showed that the O-free ESTs had no similarity with the omega-5 gliadin sequences but had similarity to other gliadins and glutenins. Furthermore, mapping results between the raw RNAseq data from the O-free and the omega-5 gliadin sequence showed a clear deletion of the N-terminal sequences which are an important signature of omega-5 gliadin. We also designed specific PCR primers that could identify omega-5 gliadin in the genomic DNA. The results showed that no omega-5 gliadin fragments were detected in the O-free. According to these results, we confirmed that the deficiency of omega-5 gliadin in the O-free is not caused by post-transcriptional or post-translational regulations such as epigenetic phenomena but by a simple deletion in the chromosome. Furthermore, we showed that the low-molecular weight glutenin subunit (LMW-GS) gene in the O-free had a single nucleotide polymorphism (SNP) causing a premature stop codon, resulting in a truncated polypeptide. We expect that the O-free line may serve as an excellent source of wheat that could prevail in the hypo-allergen wheat market, which has recently gained interest world-wide.

Genome analysis of Yucatan miniature pigs to assess their potential as biomedical model animals

  • Kwon, Dae-Jin;Lee, Yeong-Sup;Shin, Donghyun;Won, Kyeong-Hye;Song, Ki-Duk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.2
    • /
    • pp.290-296
    • /
    • 2019
  • Objective: Pigs share many physiological, anatomical and genomic similarities with humans, which make them suitable models for biomedical researches. Understanding the genetic status of Yucatan miniature pigs (YMPs) and their association with human diseases will help to assess their potential as biomedical model animals. This study was performed to identify non-synonymous single nucleotide polymorphisms (nsSNPs) in selective sweep regions of the genome of YMPs and present the genetic nsSNP distributions that are potentially associated with disease occurrence in humans. Methods: nsSNPs in whole genome resequencing data from 12 YMPs were identified and annotated to predict their possible effects on protein function. Sorting intolerant from tolerant (SIFT) and polymorphism phenotyping v2 analyses were used, and gene ontology (GO) network and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses were performed. Results: The results showed that 8,462 genes, encompassing 72,067 nsSNPs were identified, and 118 nsSNPs in 46 genes were predicted as deleterious. GO network analysis classified 13 genes into 5 GO terms (p<0.05) that were associated with kidney development and metabolic processes. Seven genes encompassing nsSNPs were classified into the term associated with Alzheimer's disease by referencing the genetic association database. The KEGG pathway analysis identified only one significantly enriched pathway (p<0.05), hsa04080: Neuroactive ligand-receptor interaction, among the transcripts. Conclusion: The number of deleterious nsSNPs in YMPs was identified and then these variants-containing genes in YMPs data were adopted as the putative human diseases-related genes. The results revealed that many genes encompassing nsSNPs in YMPs were related to the various human genes which are potentially associated with kidney development and metabolic processes as well as human disease occurrence.

A case of follow-up of a patient with 22q11.2 distal deletion syndrome and a review of the literature

  • Ha, Dong Jun;Park, Ji Sun;Jang, Woori;Jung, Na-young;Kim, Su Jin;Moon, Yeonsook;Lee, Jieun
    • Journal of Genetic Medicine
    • /
    • v.18 no.2
    • /
    • pp.110-116
    • /
    • 2021
  • Microdeletions of chromosome 22q11.2 are one of the most common microdeletions occurring in humans, and is known to be associated with a wide range of highly variable features. These deletions occur within a cluster of low copy repeats (LCRs) in 22q11.2, referred to as LCR22 A-H. DiGeorge (DGS)/velocardiofacial syndrome is the most prevalent form of a 22q11.2 deletions, caused by mainly proximal deletions between LCR22 A and D. As deletions of distal portion to the DGS deleted regions has been extensively studied, the recurrent distal 22q11.2 microdeletions distinct from DGS has been suggested as several clinical entities according to the various in size and position of the deletions on LCRs. We report a case of long-term follow-up of a female diagnosed with a 22q11.2 distal deletion syndrome, identified a deletion of 1.9 Mb at 22q11.21q11.23 (chr22: 21,798,906-23,653,963) using single nucleotide polymorphism array. This region was categorized as distal deletion type of 22q11.2, involving LCR22 D-F. She was born as a preterm, low birth weight to healthy non-consanguineous Korean parents. She showed developmental delay, growth retardation, dysmorphic facial features, and mild skeletal deformities. The patient underwent a growth hormone administration due to growth impairment without catch-up growth. While a height gain was noted, she had become overweight and was subsequently diagnosed with pre-diabetes. Our case could help broaden the genetic and clinical spectrum of 22q11.2 distal deletions.

Candidate Genes Related to Sugar Content in Sweetpotato using GWAS

  • Tae Hwa Kim;Mi Nam Chung;Hyeong Un Lee;Won Park;Sang Sik Nam
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.192-192
    • /
    • 2022
  • Sweetpotato is rich in starch, which is converted to sugar during storage due to enzymatic hydrolysis. The sugar content of sweetpotato is a component related to taste and storability. In this study, the sugar content (fructose, glucose, maltose, sucrose and total sugar content) of 94 genotypes was evaluated and the GWAS (Genome-Wide Association Study) was conducted to search for candidate genes for sugar content. The fructose and glucose content were 0.2 ~ 8.8 and 0.2 ~ 9.4 g/100g, respectively. The maltose, sucrose and total sugar content were 0.2 ~ 9.1,3.2 - 30.0 and 7.9 ~ 40.2 g/100g, respectively. The fructose and glucose showed a positive correlation (0.98). The 94 genotypes were genotyped with genotyping-by-sequencing (GBS) and aligned against the reference genome sequences of sweetpotato. The GBS libraries from 94 genotypes were sequenced on an Illumina HiSeqXten system, and 1,339,892 SNPs (Single Nucleotide Polymorphism) were generated. Filtering for < 60% missing rate and > 0.05 minor allele frequency resulted in a total of 44,255 SNPs used in GWAS. The GAPIT (Genome Association and Prediction Integrated Tool) was used to conduct based on the mean of sugar content with a Bonferroni-corrected chromosome-wide significance threshold with a -logio(P) of 5.95. The significant SNPs were obtained with fructose (seven), glucose (six), maltose (four) and sucrose (nine). There were several genes related to sugar content around the significant SNPs such as sugar transport protein 8-like, probable galactose-1 -phosphate uridyltransferase-like and beta-amylase. These results will contribute to understanding of sugar content and conversion in sweetpotato.

  • PDF

Analysis of Redcell and Blood Protein Typing in Mongolian Horse (몽고말의 적혈구항원형 및 혈액단백질형 분석)

  • Cho, G.J.;Cho, B.W.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.887-896
    • /
    • 2004
  • The present study was carried out to investigate the blood markers of Mongolian horses. The blood redcell types and blood protein types(biochemical polymorphisrns) were tested from 19 Mongolian horses by serological and electrophoretic procedure, and their phenotypes and gene frequencies were estimated. The blood group and biochemical polymorphism phenotypes observed with high frequency were $A^{af}$(42.1%), $C^a$(89.5%), $K^-$(84.2%), $U^a$(63.2%), $P^a$(42.1%) $P^-$42.1%), $Q^c$(31.6%) $Q^-$(31.6%), $AL^{AB}$((52.6%), AI$B^K$(89.5%), $ES^1$(63.2%), $GC^F$(78.9%), $HB^BI$1(68.4%), PG$D^F$(84.2%), $TF^{FIR}$(21.1%), $TF^{F2R}$(21.1%)(21.1%), and genotypes $D^{cgm/dghm}$(15.8%), $D^{dghm/dghm}$(15.8%), $D^{ad/dghm}$(10.5%), $D^{ade/dghm}$(10.5%), in Mongolian horses, respectively. Alleles observed with high frequency were $A^a$(0.4211), $C^a$(0.8947), $K^-$(0.8421), $U^a$(0.6316), $P^a$(0.4474), $Q^c$(0.4474), $D^{dghm}$(0.4211), $AL^B$(0.6579), $AIB^K$(0.9211), $ES^I$(0.7895), $GC^F$(0.8947), $HB^{BI}$(0.7895), $PGD^F$(0.8421) and $TF^R$(0.3421) in Mongolian horses. These results present basic information for estimating the genetic relationships between the Korean native horse, and developing a system for parentage verification and individuals identification in Mongolian horse.

Characterization of Bruton's Tyrosine Kinase Genetic Mutations in One Korean X-linked Agammaglobulinemia Family (반성 열성 범저감마글로불린혈증 1가계 3환자의 Bruton's Tyrosine Kinase 유전자 변이 및 임상 양상)

  • Jo, Eun-Kyeong;Song, Chang-Hwa;Park, Jeong-Kyu;Baek, Young-Jong;Rhu, Hye-Young;Lee, Jae-Ho;Hwang, Tai-Ju;Kook, Hoon
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.2
    • /
    • pp.183-191
    • /
    • 2002
  • Purpose : X-linked agammaglobulinemia(XLA) is an immunodeficiency caused by abnormalities in Bruton's tyrosine kinase(Btk), and is characterized by a deficiency of peripheral blood B cells. We studied the cytoplasmic expression of Btk protein and analyzed the Btk gene in peripheral blood mononuclear cells from two siblings and one cousin with XLA, as well as additional family members. Methods : Btk protein expression was analyzed by flow cytometry. Isolation of the coding sequence of the Btk gene was performed by amplification using the reverse transcription-polymerase chain reaction(RT-PCR) technique. Sequence alterations were screened by the single-stranded conformation polymorphism(SSCP) method and characterized by standard sequencing protocols. Results : Cytoplasmic expression of Btk protein in monocytes was not detected in three patients with XLA. In addition, Btk protein analysis clearly showed cellular mosaicism in monocytes from four obligate carriers, findings further supported by SSCP. A single base pair mutation(T to C) in Btk-exon three, which encodes the PH domain, was identified in four XLA patients. A diagnostic sequencing analysis was established to detect heterozygotic pattern in 4 carrier females. Furthermore, we found significant clinical heterogeneity in individuals with the same gene mutation. Conclusion : The implicating genetic alteration provided valuable clues to the pathogenesis of XLA in Korea and the flow cytometric analysis was suggested as a useful tool for rapid detection of XLA patients and carriers. The present study has identified a genetic mutation in the Btk coding region and demonstrated heterogeneity in clinical manifestations among patients with the same mutation. A flow cytometric analysis was found to be informative in establishing a deficiency of Btk protein in both patients and carriers and is recommended as a frontline procedure in the molecular diagnosis and work-up of XLA.

Polymorphisms in RAS Guanyl-releasing Protein 3 are Associated with Chronic Liver Disease and Hepatocellular Carcinoma in a Korean Population

  • Oh, Ah-Reum;Lee, Seung-Ku;Kim, Min-Ho;Cheong, Jae-Youn;Cho, Sung-Won;Yang, Kap-Seok;Kwack, Kyu-Bum
    • Genomics & Informatics
    • /
    • v.6 no.4
    • /
    • pp.181-191
    • /
    • 2008
  • RAS guanyl-releasing protein 3 (RasGRP3), a member of the Ras subfamily of GTPases, functions as a guanosine triphosphate (GTP)/guanosine diphosphate (GDP)-regulated switch that cycles between inactive GDP- and active GTP-bound states during signal transduction. Various growth factors enhance hepatocellular carcinoma (HCC) proliferation via activation of the Ras/Raf-1/extracellular signal-regulated kinase (ERK) pathway, which depends on RasGRP3 activation. We investigated the relationship between polymorphisms in RasGRP3 and progression of hepatitis B virus (HBV)-infected HCC in a Korean population. Nineteen RasGRP3 SNPs were genotyped in 206 patients with chronic liver disease (CLD) and 86 patients with HCC. Our results revealed that the T allele of the rs7597095 SNP and the C allele of the rs7592762 SNP increased susceptibility to HCC (OR=1.55, p=0.04 and OR=1.81${\sim}$2.61, p=0.01${\sim}$0.03, respectively). Moreover, patients who possessed the haplotype (ht) 1 (A-T-C-G) or diplotype (dt) 1 (ht1/ht1) variations had increased susceptibility to HCC (OR=1.79${\sim}$2.78, p=0.01${\sim}$0.03). In addition, we identified an association between haplotype1 (ht1) and the age of HCC onset; the age of HCC onset are earlier in ht1 +/+ than ht1 +/- or ht1 -/- (HR=0.42${\sim}$0.66, p=0.006${\sim}$0.015). Thus, our data suggest that RasGRP3 SNPs are significantly associated with an increased risk of developing HCC.