• Title/Summary/Keyword: Protein phosphatase type-1

Search Result 111, Processing Time 0.026 seconds

Comparative evaluation of the biological properties of fibrin for bone regeneration

  • Oh, Joung-Hwan;Kim, Hye-Jin;Kim, Tae-Il;Woo, Kyung Mi
    • BMB Reports
    • /
    • v.47 no.2
    • /
    • pp.110-114
    • /
    • 2014
  • Fibrin is a natural provisional matrix found in wound healing, while type I collagen is a major organic component of bone matrix. Despite the frequent use of fibrin and type I collagen in bone regenerative approaches, their comparative efficacies have not yet been evaluated. In the present study, we compared the effects of fibrin and collagen on the proliferation and differentiation of osteoblasts and protein adsorption. Compared to collagen, fibrin adsorbed approximately 6.7 times more serum fibronectin. Moreover, fibrin allowed the proliferation of larger MC3T3-E1 pre-osteoblasts, especially at a low cell density. Fibrin promoted osteoblast differentiation at higher levels than collagen, as confirmed by Runx2 expression and transcriptional activity, alkaline phosphatase activity, and calcium deposition. The results of the present study suggest that fibrin is superior to collagen in the support of bone regeneration.

Anti-hyperglycemic effects and signaling mechanism of Perilla frutescens sprout extract

  • Kim, Da-Hye;Kim, Sang Jun;Yu, Kang-Yeol;Jeong, Seung-Il;Kim, Seon-Young
    • Nutrition Research and Practice
    • /
    • v.12 no.1
    • /
    • pp.20-28
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Perilla frutescens (L.) Britton var. (PF) sprout is a plant of the labiate family. We have previously reported the protective effects of PF sprout extract on cytokine-induced ${\beta}-cell$ damage. However, the mechanism of action of the PF sprout extract in type 2 diabetes (T2DM) has not been investigated. The present study was designed to study the effects of PF sprout extract and signaling mechanisms in the T2DM mice model using C57BL/KsJ-db/db (db/db) mice. MATERIALS/METHODS: Male db/db mice were orally administered PF sprout extract (100, 300, and 1,000 mg/kg of body weight) or rosiglitazone (RGZ, positive drug, 1 mg/kg of body weight) for 4 weeks. Signaling mechanisms were analyzed using liver tissues and HepG2 cells. RESULTS: The PF sprout extract (300 and 1,000 mg/kg) significantly reduced the fasting blood glucose, serum insulin, triglyceride and total cholesterol levels in db/db mice. PF sprout extract also significantly improved glucose intolerance and insulin sensitivity, decreased hepatic gluconeogenic protein expression, and ameliorated histological alterations of the pancreas and liver. Levels of phosphorylated AMP-activated protein kinase (AMPK) protein expression also increased in the liver after treatment with the extract. In addition, an increase in the phosphorylation of AMPK and decrease in the phosphoenolpyruvate carboxykinase and glucose 6-phosphatase proteins in HepG2 cells were also observed. CONCLUSIONS: Our results sugges that PF sprout displays beneficial effects in the prevention and treatment of type 2 diabetes via modulation of the AMPK pathway and inhibition of gluconeogenesis in the liver.

A Case of Glycogen Storage Disease Type Ia Confirmed by Biopsy and Enzyme Assay (제Ia형 당원병 1례 (Glycogen Storage Disease , Type Ia))

  • Meen Sang-Ae;Rho Kwang-Sik;Kim Pyung-Kil;Jeong Hyeon-Joo;Park Young-Nyeon;Kim Myung-Joon;Kim Ji-Hong
    • Childhood Kidney Diseases
    • /
    • v.2 no.1
    • /
    • pp.77-81
    • /
    • 1998
  • The author exprienced a case of glycogen storage disease type Ia(GSD-I) in an 18-year-old male patient who was admitted to our hospital due to proteinuria and hypertension. he was suspected to have GSD when 12 years old because of his family history of short stature and hepatomegaly. On admission, physical examination revealed short stature, heparomegaly, and The diagnosis of GSD-I was confirmed by compatible liver biopsy finding and enzyme assay which erealeddeficiency of glcose-6-phosphatase if hepatocyte. Sympromatic treatment was done using antihypertensive drugs and allopurinol with diet control. The authors report a case of glycogen storage disease type Ia completely confirmed by typical clinical manifestation, pathologic findings of the liver and the kidney, and the result of enzyme assay which revealed deficiency of glucose-6-phosphatase in hepatocytes with brief review fo related literatures.

  • PDF

Effects of CoCl2 on multi-lineage differentiation of C3H/10T1/2 mesenchymal stem cells

  • Yoo, Hong Il;Moon, Yeon Hee;Kim, Min Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.1
    • /
    • pp.53-62
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) in the bone marrow and other somatic tissues reside in an environment with relative low oxygen tension. Cobalt chloride ($CoCl_2$) can mimic hypoxic conditions through transcriptional changes of some genes including hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) and vascular endothelial growth factor (VEGF). This study evaluated the potential role of $CoCl_2$ preconditioning on multi-lineage differentiation of C3H/10T1/2, a murine MSC line to understand its possible molecular mechanisms in vitro. $CoCl_2$ treatment of MSCs markedly increased HIF-$1{\alpha}$ and VEGF mRNA, and protein expression of HIF-$1{\alpha}$. Temporary preconditioning of MSCs with $CoCl_2$ induced up-regulation of osteogenic markers including alkaline phosphatase, osteocalcin, and type I collagen during osteogenic differentiation, followed by enhanced mineralization. $CoCl_2$ also increased chondrogenic markers including aggrecan, sox9, and type II collagen, and promoted chondrocyte differentiation. $CoCl_2$ suppressed the expression of adipogenic markers including $PPAR{\gamma}$, aP2, and $C/EBP{\alpha}$, and inhibited adipogenesis. Temporary preconditioning with $CoCl_2$ could affect the multi-lineage differentiation of MSCs.

Effect of BMP-7 on osteoblastic differentiation of rat periodontal ligament cells (백서 치주인대세포의 분화에 대한 Bone morphogenetic protein-7의 영향)

  • Lee, Ho-Jae;Kim, Young-Jun;Chung, Hyun-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.3
    • /
    • pp.747-760
    • /
    • 2005
  • Periodontal therapy has dealt primarily with attempts at arresting progression of disease. however, more recent techniques have focused on regenerating the periodontal ligament having the capacity to regenerate the periodontium. Recombinant human bone morphogenetic protein-7(rhBMP-7) can differentiate the osteoprogenitor cells and induce bone formation. The purpose of this study was to evaluate the effect of BMP-7 on rat periodontal ligament cells differentiation, in vitro. In the control group, cells was cultured with DMEM media. In the experimental groups, cells were cultured with rhBMP-7 in concentration of 10, 25, 50 and 100 ng/ml. Each group was characterized by examining alkaline phosphatase activity at 3 and 5 days of culture and the ability to produce mineralized nodules of rat calvarial cells at 14 days of culture. Synthesis of type I collagen(COL-I), osteocalcin(OCN), and bone sialoprotein(BSP) was evaluated by RT-PCR at 7 days of culture. Activation of Smad proteins and p38 MAP kinase was determined by western blot analysis of the cell lysates. Alkaline phosphatase activity was significantly increased in the concentration of BMP-7 50 ng/ml and 100 ng/ml compared to the control(p<0.05). The mineralized bone nodule formation was greater with addition of 50 ng/ml and 100 ng/ml BMP-7 than the control(p<0.01). In 7 days' culture, the expressions of COL-I, BSP, and OCN was increased by BMP-7 in concentration of 10 $ng/ml{\sim}100$ ng/ml. In western blot analysis, BMP-7 treated culture cells expressed Smad 1,5,8 in dose-dependent manner, whereas BMP-7 did not activate phosphorylated form of p38 MAP kinase. These result suggested that BMP-7 stimulate rat periodontal ligament cells to differentiate toward osteoblast phenotype and increase bone matrix production by activation of BMP-Smad pathway.

Induction of Apoptosis in FRTL-5 Thyroid Cells by Okadaic Acid (Okadaic Acid에 의한 FRTL-5 갑상선 세포주의 Apoptosis 유도)

  • Cho Ji-Hyoung;Chung Ki-Yong;Park Jong-Wook
    • Korean Journal of Head & Neck Oncology
    • /
    • v.18 no.2
    • /
    • pp.142-149
    • /
    • 2002
  • Objectve : Okadaic acid is a specific inhibitor of serine/threonine protein phosphatase 1 and 2A. In order to know the mechanism of apoptosis induced by okadaic acid, we treated FRTL-5 thyroid cells with okadaic acid and measured the changes of important proteins that are involved in apoptosis. Materials and Methods: We measured caspase 3 activity, $PLC-{\gamma}1$ degradation, the expression of XIAP, cIAP1, cIAP2, and cytochrome c release in okadaic acid-treated FRTL-5 thyroid cells. Results: Okadaic acid-induced caspase 3 activation and $PLC-{\gamma}1$ degradation and apoptosis were dose-dependent with a maximal effect at a concentration of 80 nmol and time-dependent with a maximal effect at 24 hours after treatment. The elevated caspase 3 activity in okadaic acid treated FRTL-5 thyroid cells are correlated with down-regulation of XIAP and cIAP1, but not cIAP2. General and potent inhibitor of caspases, z-VAD-fmk. abolished okadaic acid-induced caspase 3 activity and $PLC-{\gamma}1$ degradation. The release of cytochrome c in okadaic acid-induced FRTL-5 thyroid cells was dose-dependent with a maximal effect at a concentration of 80 nmol. Conclusions: These findings suggest that mechanism of okadaic acid-induced apoptosis is associated with cytochrome c release and increase of caspase 3 activation in FRTL-5 thyroid cells.

Effects of Ulmus davidiana Planch(Ulmaceae) herbal acupuncture solution on the proliferation of human bone cells (유근피 약침액이 인체의 골세포 증식에 미치는 영향)

  • Lee, Eon-do;Kim, Kap-sung
    • Journal of Acupuncture Research
    • /
    • v.21 no.4
    • /
    • pp.237-249
    • /
    • 2004
  • 유근피는 혈액청정작용과 혈액순환에 영향을 주는 성분으로서 골 손상의 처방전으로 자주 사용된다. 현재까지 유근피가 골재형성에 미치는 영향은 약리학적으로 불확실하였다. 이에 저자들은 본 연구에서 유근피를 약침액으로 제조하여 유근피 약침액이 골세포에 미치는 영향을 in vitro에서 연구하였다. 방법으로 인체의 골아전구세포osteoprecursor cells (OPC-1)를 각각의 다른 유근피 농도를 함유한 매체내에서 부화시키고 그에 따른 세포증식을 연구하였으며, 유근피 약침액의 농도가 $100{\mu}g/ml$ 미만이었을 때 OPC-1의 증식량은 증가되었다. 그러나 농도가 $180{\mu}g/ml$을 초과하였을 때는 약물의 독성에 의해서 OPC-1의 증식량이 확연히 억제되었다. 대부분의 처치에서 세포들이 cyclooxygenase-2 (Cox 2) 단백질에 대해서 매우 명백한 발현을 보여줬다. 배양과정 중에 유근피 약침액 농도 최소치인 $1.0{\mu}g/ml$에서 최대치인 $500{\mu}g/ml$까지 경미하게 강화된 띠를 나타내었다. 이와 같은 실험의 결과로 볼 때 유근피 약침액은 골세포의 증식활동, alkaline phosphatse(ALP) 활동 및 total protein 분비의 증가와 골세포내에서의 농도의존적 약침액 투여량에 따른 OPC-1의 독특한 type I collagen 합성에 직접적인 억제작용을 주는 것을 관찰할 수 있으므로 추후 이와 유사한 실험을 통한 보다 발전적인 연구가 이루어져야 한다고 사료되었다.

  • PDF

Evolution of E. coli Phytase for Increased Thermostability Guided by Rational Parameters

  • Li, Jiadi;Li, Xinli;Gai, Yuanming;Sun, Yumei;Zhang, Dawei
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.419-428
    • /
    • 2019
  • Phytases are enzymes that can hydrolyze phytate and its salts into inositol and phosphoric acid, and have been utilized to increase the availability of nutrients in animal feed and mitigate environmental pollution. However, the enzymes' low thermostability has limited their application during the feed palletization process. In this study, a combination of B-value calculation and protein surface engineering was applied to rationally evolve the heat stability of Escherichia coli phytase. After systematic alignment and mining for homologs of the original phytase from the histidine acid phosphatase family, the two models 1DKL and 1DKQ were chosen and used to identify the B-values and spatial distribution of key amino acid residues. Consequently, thirteen potential amino acid mutation sites were obtained and categorized into six domains to construct mutant libraries. After five rounds of iterative mutation screening, the thermophilic phytase mutant P56214 was finally yielded. Compared with the wild-type, the residual enzyme activity of the mutant increased from 20% to 75% after incubation at $90^{\circ}C$ for 5 min. Compared with traditional methods, the rational engineering approach used in this study reduces the screening workload and provides a reference for future applications of phytases as green catalysts.

Swedish mutation within amyloid precursor protein modulates global gene expression towards the pathogenesis of Alzheimer's disease

  • Shin, Jong-Yeon;Yu, Saet-Byeol;Yu, Un-Young;Ahnjo, Sang-Mee;Ahn, Jung-Hyuck
    • BMB Reports
    • /
    • v.43 no.10
    • /
    • pp.704-709
    • /
    • 2010
  • The Swedish mutation (K595N/M596L) of amyloid precursor protein (APP-swe) has been known to increase abnormal cleavage of cellular APP by Beta-secretase (BACE), which causes tau protein hyperphosphorylation and early-onset Alzheimer's disease (AD). Here, we analyzed the effect of APP-swe in global gene expression using deep transcriptome sequencing technique. We found 283 genes were down-regulated and 348 genes were up-regulated in APP-swe expressing H4-swe cells compared to H4 wild-type cells from a total of approximately 74 million reads of 38 base pairs from each transcriptome. Two independent mechanisms such as kinase and phosphatase signaling cascades leading hyperphosphorylation of tau protein were regulated by the expression of APP-swe. Expressions of catalytic subunit as well as several regulatory subunits of protein phosphatases 2A were decreased. In contrast, expressions of tau-phosphorylating glycogen synthase kinase $3\beta$(GSK-3$\beta$), cyclin dependent kinase 5 (CDK5), and cAMP-dependent protein kinase A (PKA) catalytic subunit were increased. Moreover, the expression of AD-related Aquaporin 1 and presenilin 2 expression was regulated by APP-swe. Taken together, we propose that the expression of APP-swe modulates global gene expression directed to AD pathogenesis.

Identification of genes related to intramuscular fat content of pigs using genome-wide association study

  • Won, Sohyoung;Jung, Jaehoon;Park, Eungwoo;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.2
    • /
    • pp.157-162
    • /
    • 2018
  • Objective: The aim of this study is to identify single nucleotide polymorphisms (SNPs) and genes related to pig IMF and estimate the heritability of intramuscular fat content (IMF). Methods: Genome-wide association study (GWAS) on 704 inbred Berkshires was performed for IMF. To consider the inbreeding among samples, associations of the SNPs with IMF were tested as random effects in a mixed linear model using the genetic relationship matrix by GEMMA. Significant genes were compared with reported pig IMF quantitative trait loci (QTL) regions and functional classification of the identified genes were also performed. Heritability of IMF was estimated by GCTA tool. Results: Total 365 SNPs were found to be significant from a cutoff of p-value <0.01 and the 365 significant SNPs were annotated across 120 genes. Twenty five genes were on pig IMF QTL regions. Bone morphogenetic protein-binding endothelial cell precursor-derived regulator, forkhead box protein O1, ectodysplasin A receptor, ring finger protein 149, cluster of differentiation, tyrosine-protein phosphatase non-receptor type 1, SRY (sex determining region Y)-box 9 (SOX9), MYC proto-oncogene, and macrophage migration inhibitory factor were related to mitogen-activated protein kinase pathway, which regulates the differentiation to adipocytes. These genes and the genes mapped on QTLs could be the candidate genes affecting IMF. Heritability of IMF was estimated as 0.52, which was relatively high, suggesting that a considerable portion of the total variance of IMF is explained by the SNP information. Conclusion: Our results can contribute to breeding pigs with better IMF and therefore, producing pork with better sensory qualities.