• Title/Summary/Keyword: Protein phosphatase type-1

Search Result 111, Processing Time 0.029 seconds

Yam Extracts Increase Cell Proliferation and Bone Matrix Protein Collagen Synthesis of Murine Osteoblastic MC3T3-E1 Cells

  • Shin, Mee-Young;Alcantara, Ethel H.;Park, Youn-Moon;Kwon, Soon-Tae;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.291-298
    • /
    • 2011
  • Yam extracts (Dioscorea batatas) have been reported to possess a variety of functions. However, studies on its osteogenic properties are limited. In this study, we investigated the effect of ethanol and water extracts on osteoblast proliferation and bone matrix protein synthesis, type I collagen and alkaline phosphatase (ALP), using osteoblastic MC3T3-E1 cell model. MC3T3-E1 cells were cultured with yam ethanol and water extracts (0~30 mg/L) within 39 days of osteoblast differentiation period. Cell proliferation was measured by MTT assay. Bone matrix proteins were assessed by the accumulation of type I collagen and ALP activity by staining the cell layers for matrix staining. Also, the secreted (media) matrix protein concentration (type I collagen) and enzyme activity (ALP) were measured colorimetrically. Yam ethanol and water extracts stimulated cell proliferation within the range of 15~30 mg/L at 15 day treatment. The accumulation of type I collagen in the extracellular matrix, as well as secreted collagen in the media, increased with increasing doses of yam ethanol (3~15 mg/L) and water (3~30 mg/L) extracts. ALP activity was not affected by yam ethanol extracts. Our results demonstrated that yam extracts stimulated osteoblast proliferation and enhanced the accumulation of the collagenous bone matrix protein type I collagen in the extracellular matrix. These results suggest that yam extracts may be a potential activator for bone formation by increasing osteoblast proliferation and increasing bone matrix protein type I collagen. Before confirming the osteogenic action of yam, further studies for clarifying how and whereby yam extracts can stimulate this ostegenesis action are required.

Protein Tyrosine Phosphatase 1B inhibitory Activity of Anthraquinones and Stilbenes

  • Na, Min-Kyun;Jin, Wen Yi;Min, Byung-Sun;Ahn, Jong-Seog;Bae, Ki-Hwan
    • Natural Product Sciences
    • /
    • v.14 no.2
    • /
    • pp.143-146
    • /
    • 2008
  • Protein tyrosine phosphatase 1B (PTP1B) is emerging as a potential therapeutic target for the treatment of type-2 diabetes and obesity. To search for new types of PTP1B inhibitors, we have undertaken in vitro enzyme assay for some anthraquinones and stilbenes isolated from plants. Of the anthraquinones tested, physcion (1), 1-O-methylemodin (2), and emodin (3) showed high activities, with $IC_{50}$ values of 7.6, 7.0, and $3.8{\mu}g/mL$, respectively, while the anthraquinone glycosides, physcion-8-O-${\beta}$-D-glucopyranoside (4) and emodin-8- O-${\beta}$-D-glucopyranoside (5), were less active than their aglycones. All the stilbenens (6 - 15) slightly inhibited PTP1B activity at high concentration of $30{\mu}g/mL$. Our findings suggest that the hypoglycemic effect of anthraquinones may be associated with their PTP1B inhibitory activity.

Docking Study of Biflavonoids, Allosteric Inhibitors of Protein Tyrosine Phosphatase 1B

  • Lee, Jee-Young;Jung, Ki-Woong;Woo, Eun-Rhan;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1479-1484
    • /
    • 2008
  • Protein tyrosine phosphatase (PTP) 1B is the superfamily of PTPs and a negative regulator of multiple receptor tyrosine kinases (RTKs). Inhibition of protein tyrosine phosphatase 1B (PTP1B) has been proposed as a strategy for the treatment of type 2 diabetes and obesity. Recently, it has been reported that amentoflavone, a biflavonoid extracted from Selaginella tamariscina, inhibited PTP1B. In the present study, docking model between amentoflavone and PTP1B was determined using automated docking study. Based on this docking model and the interactions between the known inhibitors and PTP1B, we determined multiple pharmacophore maps which consisted of five features, two hydrogen bonding acceptors, two hydrogen bonding donors, and one lipophilic. Using receptor-oriented pharmacophore-based in silico screening, we searched the biflavonoid database including 40 naturally occurring biflavonoids. From these results, it can be proposed that two biflavonoids, sumaflavone and tetrahydroamentoflavone can be potent allosteric inhibitors, and the linkage at 5',8''-position of two flavones and a hydroxyl group at 4'-position are the critical factors for their allosteric inhibition. This study will be helpful to understand the mechanism of allosteric inhibition of PTP1B by biflavonoids and give insights to develop potent inhibitors of PTP1B.

Screening of Protein Tyrosine Phosphatase 1B Inhibitory Activity from Some Vietnamese Medicinal Plants

  • Hoang, Duc Manh;Trung, Trinh Nam;Hien, Phan Thi Thu;Ha, Do Thi;Van Luong, Hoang;Lee, Myoung-Sook;Bae, Ki-Hwan
    • Natural Product Sciences
    • /
    • v.16 no.4
    • /
    • pp.239-244
    • /
    • 2010
  • Protein tyrosine phosphatase 1B (PTP1B), a negative regulator of insulin signaling, has served as a potential drug target for the treatment of type 2 diabetes. The MeOH extracts of twenty-nine medicinal plants, traditionally used in Vietnam as anti-diabetes agents, were investigated for PTP1B inhibitory activity in vitro. The results indicated that, most materials showed moderate to strong inhibitory activity with $IC_{50}$ values ranging from $3.4\;{\mu}g/mL$ to $35.1\;{\mu}g/mL$; meanwhile, eleven extracts (37.9%) could demonstrate PTP1B activity with $IC_{50}$ values less than $15.5\;{\mu}g/mL$; sixteen extracts (55.2%) could demonstrate PTP1B activity with $IC_{50}$ values ranging from $15.5\;{\mu}g/mL$ to $35.1\;{\mu}g/mL$. The study may provide a proof, at least in a part, for the ethno-medical use in diabetes disease of these plants.

Expressing the Tyrosine Phosphatase (CaTPP1) Gene from Capsicum annuum in Tobacco Enhances Cold and Drought Tolerances

  • Hwang, Eul-Won;Park, Soo-Chul;Jeong, Mi-Jeong;Byun, Myung-Ok;Kwon, Hawk-Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.2
    • /
    • pp.50-56
    • /
    • 2008
  • As one way to approach to cold defense mechanism in plants, we previously identified the gene for protein-tyrosine phosphatase (CaTPP1) from hot pepper (Capsicum annuum) using cDNA microarray analysis coupled with Northern blot analysis. We showed that the CaTPP1 gene was strongly induced by cold, drought, salt and ABA stresses. The CaTPP1 gene was engineered under control of CaMV 35S promoter for constitutive expression in transgenic tobacco plants by Agrobacterium-mediated transformation. The resulting CaTPP1 transgenic tobacco plants showed significantly increased cold stress resistance. It also appeared that some of the transgenic tobacco plants showed increased drought tolerance. The CaTPP1 transgenic plants showed no visible phenotypic alteration compared to wild type plants. These results showed the involvement of protein tyrosine phosphatase in tolerance of abiotic stresses including cold and drought stress.

Differential Effects of Tautomycetin and Its Derivatives on Protein Phosphatase Inhibition, Immunosuppressive Function and Antitumor Activity

  • Niu, Mingshan;Sun, Yan;Liu, Bo;Tang, Li;Qiu, Rongguo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.2
    • /
    • pp.145-151
    • /
    • 2012
  • In the present work, we studied the structure-activity relationship (SAR) of tautomycetin (TMC) and its derivatives. Further, we demonstrated the correlation between the immunosuppressive fuction, anticancer activity and protein phosphatase type 1 (PP1) inhibition of TMC and its derivatives. We have prepared some TMC derivatives via combinatorial biosynthesis, isolation from fermentation broth or chemical degradation of TMC. We found that the immunosuppressive activity was correlated with anticancer activity for TMC and its analog compounds, indicating that TMC may home at the same targets for its immunosuppressive and anticancer activities. Interestingly, TMC-F1, TMC-D1 and TMC-D2 all retained significant, albeit reduced PP1 inhibitory activity compared to TMC. However, only TMC-D2 showed immunosuppressive and anticancer activities in studies carried out in cell lines. Moreover, TMC-Chain did not show any significant inhibitory activity towards PP1 but showed strong growth inhibitory effect. This observation implicates that the maleic anhydride moiety of TMC is critical for its phosphatase inhibitory activity whereas the C1-C18 moiety of TMC is essential for the inhibition of tumor cell proliferation. Furthermore, we measured $in$ $vivo$ phosphatase activities of PP1 in MCF-7 cell extracts treated with TMC and its related compounds, and the results indicate that the cytotoxicity of TMC doesn't correlate with its $in$ $vivo$ PP1 inhibition activity. Taken together, our study suggests that the immunosuppressive and anticancer activities of TMC are not due to the inhibition of PP1. Our results provide a novel insight for the elucidation of the underlying molecular mechanisms of TMC's important biological functions.

Screening of Korean Traditional Prescriptions with Inhibitory Activity against Protein Tyrosine Phosphatase 1B and Analysis of Jakgamhwangsinbu-tang (芍甘黃辛附湯) Prescription (전통 처방의 Protein Tyrosine Phosphatase 1B 저해 활성 검색 및 작감황신부탕(芍甘黃辛附湯) 처방 분석)

  • Lee, Woojung;Kim, Hyun Jung;Moon, Hong Seop;Kim, Su-Nam;Yoon, Goo
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.2
    • /
    • pp.176-181
    • /
    • 2013
  • In order to search for protein tyrosine phosphatase 1B (PTP1B) inhibitors as therapy of type 2 diabetes and obesity from Korean traditional prescriptions, we selected 58 traditional prescriptions based on a review of the Korean traditional medicine books. The hot water extracts of Korean traditional prescriptions were screened for the inhibitory activity against PTP1B. Among the tested extracts, water extracts of Jakgamhwangsinbu-tang, Seonbanghwalmyung-eum, and Takreeonjoong-tang showed relatively good inhibitory activity against PTP1B at the concentration of $30{\mu}g/ml$. Additionally, we evaluated PTP1B inhibitory effect for each herbal ingredient and composition in Jakgamhwangsinbu-tang (芍甘黃辛附湯). Of the tested ingredients from this herbal medicine, water extracts of Paeoniae Radix rubra and Rhei Rhizoma, and ethanol extracts of Paeoniae Radix alba, Rhei Rhizoma, Asiasari Radix, and Aconiti Tuber showed good PTP1B inhibitory effect. Herbal compositions composed of these active herbal ingredients exhibited significant activity for PTP1B inhibition over 70% at $7.5{\mu}g/ml$.

Protein Tyrosine Phosphatase 1B Activity of Quercetin from Houttuynia Cordata (어성초로부터 분리된 Quercetin의 Protein Tyrosine Phosphatase 1B 활성)

  • Choi, Hwa-Jung;Bae, Eun-Young;No, Yong-Ju;Baek, Seung-Hwa
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.6
    • /
    • pp.1532-1536
    • /
    • 2008
  • Quercetin which isolated form the roots of Houttuynia cordata. was determined on the basis of IR, ID and 2D NMR specta by direct comparison with authentic compounds. Protein tyrosine phophatase 1B (PTP1B) is thought to be a negative regulator in insulin signal-transduction pathway. Insulin-resistance by the activation of PTP1B is a hallmark of both type 2 diabetes and obesity. Thus, the compound inhibiting PTP1B can improve insulin resistance and can be effective in treating type 2 diabetes and obesity. Quercetin which measured the inhibitory activity against PTP1B was 92.1% inhibition in the 30 ${\mu}g$/mL, 83.4% inhibition in the 6 ${\mu}g$/mL and 76.5% inhibition in the 3 ${\mu}g$/mL. These results suggest that quercetin retains a potential PTP1B activity.

New dammarane-type triterpenoids from the leaves of Panax notoginseng and their protein tyrosine phosphatase 1B inhibitory activity

  • Li, Dawei;Cao, Jiaqing;Bi, Xiuli;Xia, Xichun;Li, Wei;Zhao, Yuqing
    • Journal of Ginseng Research
    • /
    • v.38 no.1
    • /
    • pp.28-33
    • /
    • 2014
  • Background: Panax notoginseng has been used as a general tonic agent to invigorate human body for millennia in China and continued to be used until present. Methods: Some chromatographic methods were performed to isolate pure triterpenoids, and their structures were determined by nuclear magnetic resonance (NMR) experiments. Anti-diabetes activities of isolated compounds were evaluated through their inhibitory activity of protein tyrosine phosphatase 1B (PTP1B) enzyme. Results and Conclusion: Three new dammarane-type triterpenoids, notoginsenoside-LX (1), notoginsenoside-LY (2), and notoginsenoside-FZ (3) together with eighteen known compounds were isolated from the Panax notoginseng leaves. The structure-activity relationship of the compounds with dammaranetype triterpenoids and their PTP1B inhibitory activity were also reported. Results showed that compounds 2, 15, 20, and 21 can significantly inhibit the enzyme activity of PTP1B in a dose-dependent manner, with inhibitory concentration 50 ($IC_{50}$) values of $29.08{\mu}M$, $21.27{\mu}M$, $28.12{\mu}M$, and $26.59{\mu}M$, respectively. The results suggested that Panax notoginseng leaves might have potential as a new therapeutic agent for the treatment of diabetes.

The Effects of Palmijihwang-hwan (Baweidehuang-wan) and Obaeja (Galla Rhois) on Proliferation Activity of Alkaline Phosphatase and the Synthetic Ability of Protein in Osteoblast-like Cell Lines and Periodontal Ligament Fibroblasts (팔미지황환 및 오배자 추출물이 뼈모유사세포와 치주인대섬유모세포의 증식, Alkaline Phosphatase의 활성 및 단백질 합성능에 미치는 영향)

  • 김천종;안영민;안세영;두호경
    • The Journal of Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.35-44
    • /
    • 2003
  • Objective : This study was performed to evaluate the effects of Palmijihwang-hwan (Baweidehuang-wan) and Obaeja (Galla Rhois) on the regeneration of periodontal tissue. Methods : In this study, we used MC3T3-El cells, such as osteoblast-like cell lines and human periodontal ligament fibroblasts, for experimental material. We separated each type of cells into a control group and an experimental group. In the control group, the cells were cultivated for 48 hours with distilled water and media which contained 10% fetal bovine serum (FBS) and penicillin (l00unit/ml)-streptomycin ($l00{\mu\textrm{g}}/ml$) at $37^{\circ}$ in 5% $CO_2$ gas. In the experimental group, the cells were cultivated for 48 hours with Palmijihwang-hwan extract and Obaeja extract (concentrations $1{\mu\textrm{g}}/ml,{\;}25{\mu\textrm{g}}/ml,{\;}50{\mu\textrm{g}}/ml$) under the same conditions as the control group. Investigating the regeneration of periodontal tissue was performed by evaluating proliferation, the activity of alkaline phosphatase and the synthetic ability of proteins using those cultivated cells by means of microculture tetrazolium (MTT) assay, alkaline phosphatase substrate kit and protein assay kit. Results : 1. In vitro, Palmijihwang-hwan extract increased the proliferation of MC3T3-El cells. 2. In vitro, Obaeja extract increased the activity of alkaline phosphatase and the synthetic ability of protein in MC3T3-El cells and human periodontal ligament fibroblasts depending on Obaeja extract's concentration. Conclusion : Obaeja extract can be developed as a subsidiary medicine for the regeneration of periodontal tissue. Further studies to evaluate the different concentrations the Obaeja extract and clinical trials in vivo are suggested.

  • PDF