• Title/Summary/Keyword: Protein phosphatase 4

Search Result 397, Processing Time 0.032 seconds

Changes in Phosphatase Activities of Mouse Epididymal Spermatozoa during Maturation (생쥐 부정소 정자의 성숙과정에서 Phosphatase 활성도 변화)

  • 김문규;윤현수;김종흡;김성례
    • The Korean Journal of Zoology
    • /
    • v.33 no.1
    • /
    • pp.70-77
    • /
    • 1990
  • The change of phosphatase activities of the epididymal spermatozoa has been examined during epididymal maturation in mouse. The quantitative analysis of phQsphatase activities have been carried out using the method modified by Emst(1975). The results of experiment were summarized as the followings. Total protein of the caput epididyrnal spermatozoa(CPS) was measured as 59.1 $\pm$8.4(mg/10 9 spermatozoa), and that of the cauda epididymal spermatozoa(CDS) was 14.0$\pm$12.3(mg/10 9 spermatozoa). When phosphatase activities of the CDS in basic reaction medium were 29.2% in alkaline phosphatase, 44.9% in ATPse and 53.8% in acid phosphatase. The activities were eminently decreased in all CDS in contrast to those of CPS. The alkaline phosphatase and ATPase activities of K+ -dependent were decreased in CDS when compared with caput epididymal spermatozoa, and alkaline phosphatase, ATPase and acid phosphatase activities of $Ca^2$+ -dependent were increased in homogenized spermatozoa when compared with intact spermatozoa. From these results, it may be concluded that the decrease of phosphatases activities in spermatozoa during epididymal maturation may play some significant roles in acquiring fertilizing capability.

  • PDF

Protein Tyrosine Phosphatase 1B inhibitory Activity of Anthraquinones and Stilbenes

  • Na, Min-Kyun;Jin, Wen Yi;Min, Byung-Sun;Ahn, Jong-Seog;Bae, Ki-Hwan
    • Natural Product Sciences
    • /
    • v.14 no.2
    • /
    • pp.143-146
    • /
    • 2008
  • Protein tyrosine phosphatase 1B (PTP1B) is emerging as a potential therapeutic target for the treatment of type-2 diabetes and obesity. To search for new types of PTP1B inhibitors, we have undertaken in vitro enzyme assay for some anthraquinones and stilbenes isolated from plants. Of the anthraquinones tested, physcion (1), 1-O-methylemodin (2), and emodin (3) showed high activities, with $IC_{50}$ values of 7.6, 7.0, and $3.8{\mu}g/mL$, respectively, while the anthraquinone glycosides, physcion-8-O-${\beta}$-D-glucopyranoside (4) and emodin-8- O-${\beta}$-D-glucopyranoside (5), were less active than their aglycones. All the stilbenens (6 - 15) slightly inhibited PTP1B activity at high concentration of $30{\mu}g/mL$. Our findings suggest that the hypoglycemic effect of anthraquinones may be associated with their PTP1B inhibitory activity.

Docking Study of Biflavonoids, Allosteric Inhibitors of Protein Tyrosine Phosphatase 1B

  • Lee, Jee-Young;Jung, Ki-Woong;Woo, Eun-Rhan;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1479-1484
    • /
    • 2008
  • Protein tyrosine phosphatase (PTP) 1B is the superfamily of PTPs and a negative regulator of multiple receptor tyrosine kinases (RTKs). Inhibition of protein tyrosine phosphatase 1B (PTP1B) has been proposed as a strategy for the treatment of type 2 diabetes and obesity. Recently, it has been reported that amentoflavone, a biflavonoid extracted from Selaginella tamariscina, inhibited PTP1B. In the present study, docking model between amentoflavone and PTP1B was determined using automated docking study. Based on this docking model and the interactions between the known inhibitors and PTP1B, we determined multiple pharmacophore maps which consisted of five features, two hydrogen bonding acceptors, two hydrogen bonding donors, and one lipophilic. Using receptor-oriented pharmacophore-based in silico screening, we searched the biflavonoid database including 40 naturally occurring biflavonoids. From these results, it can be proposed that two biflavonoids, sumaflavone and tetrahydroamentoflavone can be potent allosteric inhibitors, and the linkage at 5',8''-position of two flavones and a hydroxyl group at 4'-position are the critical factors for their allosteric inhibition. This study will be helpful to understand the mechanism of allosteric inhibition of PTP1B by biflavonoids and give insights to develop potent inhibitors of PTP1B.

Purification and NMR Studies of RNA Polymerase II C-Terminal Domain Phosphatase 1 Containing Ubiquitin Like Domain

  • Ko, Sung-Geon;Lee, Young-Min;Yoon, Jong-Bok;Lee, Weon-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1039-1042
    • /
    • 2009
  • RNA polymerase II C-terminal domain phosphatase 1 containing ubiquitin like domain (UBLCP1) has been identified as a regulatory molecule of RNA polymerase II. UBLCP1 consists of ubiquitin like domain (UBL) and phosphatase domain homologous with UDP and CTD phosphatase. UBLCP1 was cloned into the E.coli expression vectors, pET32a and pGEX 4T-1 with TEV protease cleavage site and purified using both affinity and gel-filtration chromatography. Domains of UBLCP1 protein were successfully purified as 7 mg/500 mL (UBLCP1, 36.78 KDa), 32 mg/500 mL (UBL, 9 KDa) and 8 mg/500 mL (phosphatase domain, 25 KDa) yielded in LB medium, respectively. Isotope-labeled samples including triple-labeled ($^2H/^{15}N/^{13}C$) UBLCP1 were also prepared for hetero-nuclear NMR experiments. $^{15}N-^{1}H$ 2D-HSQC spectra of UBLCP1 suggest that both UBL and phosphatase domain are properly folded and structurally independent each other. These data will promise us further structural investigation of UBLCP1 by NMR spectroscopy and/or X-ray crystallography.

EFFECT OF LOW DEGRADABLE DIETARY PROTEINS ON HEPATIC METABOLISM OF EARLY LACTATING BUFFALOES

  • Sikka, P.;Sengar, S.S.;Mudgal, V.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.4
    • /
    • pp.643-646
    • /
    • 1992
  • Role of low degradable protein in milk production of early lactating Murrah buffaloes has been studied in relation to energy status of test animals. Replacement of conventional concentrate mixture with low degradable cotton seed cake resulted in appreciable changes in circulatory transaminases and phosphatase levels. The enzymes viz. glutamate oxaloacetate and glutamate pyruvate transaminase and alkaline phosphatases increased with feeding of said cake indicating stress on hepatic tissue. Animals seemed to overcome stress by feeding enhanced levels of same protein along with improved feed intake, body weight and milk production.

Synthesis and Biological Evaluation of Heterocyclic Ring-substituted Chalcone Derivatives as Novel Inhibitors of Protein Tyrosine Phosphatase 1B

  • Chen, Zhen-Hua;Sun, Liang-Peng;Zhang, Wei;Shen, Qiang;Gao, Li-Xin;Li, Jia;Piao, Hu-Ri
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1505-1508
    • /
    • 2012
  • Protein tyrosine phosphatase 1B (PTP1B) is a key factor in negative regulation of the insulin pathway, and is a promising target for the treatment of type-II diabetes, obesity and cancer. Herein, compound ($\mathbf{4}$) was first observed to have moderate inhibitory activity against PTP1B with an $IC_{50}$ value of $13.72{\pm}1.53{\mu}M$. To obtain more potent PTP1B inhibitors, we synthesized a series of chalcone derivatives using compound ($\mathbf{4}$) as the lead compound. Compound $\mathbf{4l}$ ($IC_{50}=3.12{\pm}0.18{\mu}M$) was 4.4-fold more potent than the lead compound $\mathbf{4}$ ($IC_{50}=13.72{\pm}1.53{\mu}M$), and more potent than the positive control, ursolic acid ($IC_{50}=3.40{\pm}0.21{\mu}M$). These results may help to provide suitable drug-like lead compounds for the design of inhibitors of PTP1B as well as other PTPs.

Dephosphorylation Study of Phosphorylated Myelin Basic Protein: A Model Substrate for Protein Phosphatase (인산화된 신경수초 염기성 단백질의 탈인산화 연구: 단백질 탈인산화 효소의 기질 모델)

  • Kim, Jin Hahn;Choi, Myung Un
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.4
    • /
    • pp.205-209
    • /
    • 1997
  • The site specificity of dephosphorylation of myelin basic protein(MBP) was studied in vitro. To assign amino acid site of dephosphorylation, MBP was phosphorylated by protein kinase C(PKC) and dephosphorylated by protein phosphatase PP2A. The phosphorylated MBP was digested by trypsine and the digested peptides were separated by a reverse phase HPLC chromatography. The radioactivity of each fraction was counted and partially sequenced. Seven radioactive peptides were observed and $Ser^{55}$ in the second peak($P_2$) shows the best susceptibility for the phosphorylation. However in the dephosphorylation, the fifth peak($P_5$) appeared to release it's phosphate group most rapidly. This result demonstrates that MBP is a suitable substrate for protein phosphatase.

  • PDF

Phosphatase Ssu72 Is Essential for Homeostatic Balance Between CD4+ T Cell Lineages

  • Min-Hee Kim;Chang-Woo Lee
    • IMMUNE NETWORK
    • /
    • v.23 no.2
    • /
    • pp.12.1-12.17
    • /
    • 2023
  • Ssu72, a dual-specificity protein phosphatase, not only participates in transcription biogenesis, but also affects pathophysiological functions in a tissue-specific manner. Recently, it has been shown that Ssu72 is required for T cell differentiation and function by controlling multiple immune receptor-mediated signals, including TCR and several cytokine receptor signaling pathways. Ssu72 deficiency in T cells is associated with impaired fine-tuning of receptor-mediated signaling and a defect in CD4+ T cell homeostasis, resulting in immune-mediated diseases. However, the mechanism by which Ssu72 in T cells integrates the pathophysiology of multiple immune-mediated diseases is still poorly elucidated. In this review, we will focus on the immunoregulatory mechanism of Ssu72 phosphatase in CD4+ T cell differentiation, activation, and phenotypic function. We will also discuss the current understanding of the correlation between Ssu72 in T cells and pathological functions which suggests that Ssu72 might be a therapeutic target in autoimmune disorders and other diseases.

CoMFA Analysis on Inhibitory Effect of $3{\beta}$-Hydroxy-12-oleanen-28-oic Acid Analogues on PTP-1B Activity and Prediction of Active Compounds ($3{\beta}$-Hydroxy-12-oleanen-28-oic Acid 유도체들의 PTP-1B 저해활성에 대한 CoMFA 분석과 활성 분자들의 예측)

  • Kim, Sang-Jin;Kim, Se-Gon;Sung, Nack-Do
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.2
    • /
    • pp.109-115
    • /
    • 2008
  • The comparative molecular field analyses(CoMFA) models between the substituents with changing groups($R_1{\sim}R_4$) of $3{\beta}$-hydroxy-12-oleanen-28-oic acid derivatives as substrate molecule and their inhibitory activities($pI_{50}$) against protein tyrosine phosphatase(PTP)-1B were derived and discussed quantitatively. The optimized CoMFA F1 model have best predictability and fitness($r^2_{cv.}=0.654$ and $r^2_{ncv.}=0.995$). The order of contribution ratio (%) with CoMFA fields on the inhibitory activities was a steric field(53.0%), electrostatic field(36.2%) and hydrophobic field(10.8%). From the analytical results of CoMFA contour maps, the inhibitory activities were dependent on the R4 group in substrate molecules. Particularly, the new active compounds(P1 & P2) with the inhibitory activity against melanin synthesis were expected.