• 제목/요약/키워드: Protein phosphatase 4

검색결과 402건 처리시간 0.032초

A Novel Calcineurin-interacting Protein, CNP-3, Modulates Calcineurin Deficient Phenotypes in Caenorhabditis elegans

  • Kim, Yun Hee;Song, Hyun-Ok;Ko, Kyung Min;Singaravelu, Gunasekaran;Jee, Changhoon;Kang, Junsu;Ahnn, Joohong
    • Molecules and Cells
    • /
    • 제25권4호
    • /
    • pp.566-571
    • /
    • 2008
  • Calcineurin (Cn) is a calcium/calmodulin-dependent serine/threonine protein phosphatase that has diverse functions in different cell types and organisms. We screened proteins interacting with the C. elegans CnA homolog, TAX-6, by the yeast two-hybrid system. CNP-3 (Calcineurin interacting protein-3) is a novel protein that physically interacts with the catalytic domain of TAX-6. It is strongly expressed in the nuclei of intestine, hypodermis, dorsal uterine regions and spermatheca. Expression begins around the 60-cell stage and proceeds during all larval stages and the adult. To elucidate the biological function of cnp-3 we isolated a cnp-3 deletion mutant. Since CNP-3 binds CnA, we looked at factors associated with calcineurin loss-of-function mutants, such as brood size, body size, serotonin- and levamisole-mediated egg-laying behavior. The cnp-3(jh145) single mutant had no gross defects compared to wild-type animal. However, the phenotypes of the double mutants, tax-6(p675);cnp-3(jh145) and cnb-1(jh103);cnp-3(jh145), were more severe in terms of brood size, body size and serotonin-mediated egg-laying defects than tax-6(p675) and cnb-1(jh103), respectively. These results suggest that dysfunction of cnp-3 enhances certain calcineurin loss-of-function phenotypes in C. elegans.

이자효소 분비에 관여하는 세포 내 조절 단백에 대한 연구 (Studies on Intracellular Regulatory Proteins of Pancreatic Exocrine Secretion)

  • 정구용;최재원;최홍순;김경환
    • 대한약리학회지
    • /
    • 제32권2호
    • /
    • pp.243-257
    • /
    • 1996
  • CCK and cholinergic agonist stimulate enzyme release from the pancreatic acini via G-protein-mediated activation of phospholipase C, In contrast secretin and related peptides increase the level of cAMP and activate cAMP-dependent protein kinase. Camostat, a synthetic protease inhibitor, causes pancreatic hypertrophy and hyperplasia by increasing the CCK release. In this study, the secretagogue-induced changes of intracellular proteins were examined in the dispersed pancreatic acini of rats with or without camostat treatment. Camostat(FOY-305, 200 mg/kg, p.o.) was given for 4 days twice daily and the dispersed acini were prepared at 12 bouts after last treatment. The profiles of Intracellular phosphoproteins were analyzed by two-dimensional gel electrophoresis after incubating the acini with $^{32}P$. The amylase release from the dispersed acini was measured. The pancreatic weight was increased to 126% of control, while amylase activity per mg acinar protein decreased to 41% of control, The maximum response of amylase release from dispersed acini to CCK-8 or carbachol was markedly decreased(65% or 46% of control, respectively). The group of intracellular proteins(24 kD, pI $4.5{\sim}8.5$) was increased in quantity by camostat. CCK-8 or secretin increased phosphorylation of a protein(34 kD, pI 4.7) in camostat-treated as well as control rats. CCK-8 increased tyrosine phosphoryiation in the acini of control rats. However, in camostat-treated rats, the basal level of tyrosine phosphorylation was increased and it was rather decreased by CCK-8. Secretin had no effect on the level of tyrosine phosphorylation in acini. These results indicate that both phospholipase C and adenylate cyclase induce phosphorylation of an intracellular acinar protein(34 kD, pI 4.7) and camostat treatment increases the basal level of tyrosine phosphorylation in acinar cells. And these results suggest that not only serine/threonine protein kinase but also protein tyrosine kinase/phosphatase are involved in the process of CCK receptor mediated stimulation-secrelion coupling.

  • PDF

A Receptor Tyrosine Kinase Inhibitor, Dovitinib (TKI-258), Enhances BMP-2-Induced Osteoblast Differentiation In Vitro

  • Lee, Yura;Bae, Kyoung Jun;Chon, Hae Jung;Kim, Seong Hwan;Kim, Soon Ae;Kim, Jiyeon
    • Molecules and Cells
    • /
    • 제39권5호
    • /
    • pp.389-394
    • /
    • 2016
  • Dovitinib (TKI258) is a small molecule multi-kinase inhibitor currently in clinical phase I/II/III development for the treatment of various types of cancers. This drug has a safe and effective pharmacokinetic/pharmacodynamic profile. Although dovitinib can bind several kinases at nanomolar concentrations, there are no reports relating to osteoporosis or osteoblast differentiation. Herein, we investigated the effect of dovitinib on human recombinant bone morphogenetic protein (BMP)-2-induced osteoblast differentiation in a cell culture model. Dovitinib enhanced the BMP-2-induced alkaline phosphatase (ALP) induction, which is a representative marker of osteoblast differentiation. Dovitinib also stimulated the translocation of phosphorylated Smad1/5/8 into the nucleus and phosphorylation of mitogen-activated protein kinases, including ERK1/2 and p38. In addition, the mRNA expression of BMP-4, BMP-7, ALP, and OCN increased with dovitinib treatment. Our results suggest that dovitinib has a potent stimulating effect on BMP-2-induced osteoblast differentiation and this existing drug has potential for repositioning in the treatment of bone-related disorders.

Ceramide-Mediated Cell Death Was Accompanied with Changes of c-Myc and Rb Protein

  • Moon, Soon-Ok;Lee, Jin-Woo
    • BMB Reports
    • /
    • 제31권4호
    • /
    • pp.333-338
    • /
    • 1998
  • The sphingomyelin cycle and ceramide generation have been recognized as potential growth suppression signals in mammalian cells. Ceramide has been shown to induce differentiation, cell growth arrest, senescence, and apoptosis. Although the intracelluar target for the action of ceramide remains unknown, recent studies have demonstrated the role of cytosolic ceramideactivated protein phosphatase(CAPP). In this study, the cytotoxic effect of C2-ceramide, a synthetic cellpermeable ceramide analog, on HEp-2 cells and the mechanism by which ceramide induces cell death were investigated. The addition of exogenous C2-ceramide resulted in a concentration dependent cell death. Okadaic acid, a potent inhibitor of CAPP, enhanced ceramide-mediated cell death, which suggests that CAPP is not involved in this process. To understand the mechanism of action of ceramide, we studied the relationship between ceramide and c-Myc and pRb which are defined components of cell growth regulation. Western blot analyses revealed that C2-ceramide (10${\mu}M$) induced c-Myc down-regulation, but there were no significant changes in pRb. However, treatment of okadaic acid (10 nM) enhanced c-Myc and pRb down-regulation. Reduction of the amount of c-Myc and pRb occurred during HEp-2 cell death. These results suggest that the cytotoxic effect of ceramide in HEp-2 cells may not be mediated through the action of CAPP and that the downstream target for ceramide is c-Myc and pRb.

  • PDF

Low-Intensity Pulsed Ultrasound Promotes BMP9 Induced Osteoblastic Differentiation in Rat Dedifferentiated Fat Cells

  • Fumiaki Setoguchi;Kotaro Sena;Kazuyuki Noguchi
    • International Journal of Stem Cells
    • /
    • 제16권4호
    • /
    • pp.406-414
    • /
    • 2023
  • Dedifferentiated fat cells (DFATs) isolated from mature adipocytes have a multilineage differentiation capacity similar to mesenchymal stem cells and are considered as promising source of cells for tissue engineering. Bone morphogenetic protein 9 (BMP9) and low-intensity pulsed ultrasound (LIPUS) have been reported to stimulate bone formation both in vitro and in vivo. However, the combined effect of BMP9 and LIPUS on osteoblastic differentiation of DFATs has not been studied. After preparing DFATs from mature adipose tissue from rats, DFATs were treated with different doses of BMP9 and/or LIPUS. The effects on osteoblastic differentiation were assessed by changes in alkaline phosphatase (ALP) activity, mineralization/calcium deposition, and expression of bone related genes; Runx2, osterix, osteopontin. No significant differences for ALP activity, mineralization deposition, as well as expression for bone related genes were observed by LIPUS treatment alone while treatment with BMP9 induced osteoblastic differentiation of DFATs in a dose dependent manner. Further, co-treatment with BMP9 and LIPUS significantly increased osteoblastic differentiation of DFATs compared to those treated with BMP9 alone. In addition, upregulation for BMP9-receptor genes was observed by LIPUS treatment. Indomethacin, an inhibitor of prostaglandin synthesis, significantly inhibited the synergistic effect of BMP9 and LIPUS co-stimulation on osteoblastic differentiation of DFATs. LIPUS promotes BMP9 induced osteoblastic differentiation of DFATs in vitro and prostaglandins may be involved in this mechanism.

The Impact of Calcium Depletion on Proliferation of Chlorella sorokiniana Strain DSCG150

  • Soontae Kang;Seungchan Cho;Danhee Jeong;Urim Kim;Jeongsug Kim;Sangmuk Lee;Yuchul Jung
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권7호
    • /
    • pp.1425-1432
    • /
    • 2024
  • This study analyzed the effects of Ca2+ metal ions among culture medium components on the Chlorella sorokiniana strain DSCG150 strain cell growth. The C. sorokiniana strain DSCG150 grew based on a multiple fission cell cycle and growth became stagnant in the absence of metal ions in the medium, particularly Ca2+. Flow cytometry and confocal microscopic image analysis results showed that in the absence of Ca2+, cell growth became stagnant as the cells accumulated into four autospores and could not transform into daughter cells. Genetic analysis showed that the absence of Ca2+ caused upregulation of calmodulin (calA) and cell division control protein 2 (CDC2_1) genes, and downregulation of origin of replication complex subunit 6 (ORC6) and dual specificity protein phosphatase CDC14A (CDC14A) genes. Analysis of gene expression patterns by qRT-PCR showed that the absence of Ca2+ did not affect cell cycle progression up to 4n autospore, but it inhibited Chlorella cell fission (liberation of autospores). The addition of Ca2+ to cells cultivated in the absence of Ca2+ resulted in an increase in n cell population, leading to the resumption of C. sorokiniana growth. These findings suggest that Ca2+ plays a crucial role in the fission process in Chlorella.

알콜섭취가 성장기 닭의 혈액성분에 미치는 영향 (Effect of Ethanol Intake on Blood Component in Broiler Chicks)

  • 고진복;오형근;정복미;김재영;고영두
    • 한국식품영양과학회지
    • /
    • 제17권4호
    • /
    • pp.336-340
    • /
    • 1988
  • 알콜이 혈액성분에 미치는 영향을 관찰하고자, 숫병아리를 사용하여 대조군, 음료수에 1, 2 및 3% 알콜첨가군 등 4군으로 나누어 7주간 사육하였다. 알콜섭취에 따른 결과는 체중은 1% 알콜군이 가장 증가되었고, 간중량은 3% 알콜군이 유의하게 증가되었다. 적혈구수, hemoglobin, hematocrit 및 혈청단백질농도는 알콜섭취에 의한 변화를 보이지 않았다. 혈청중 GOT 및 ${\gamma}-GTP$활성은 2 및 3% 알콜군이 유의하게 증가되었으나, GPT 활성은 알콜섭취군들이 다소 감소되는 경향이었다. 혈청중 LDH 활성은 알클섭취군들에서 유의한 차이는 아니나 증가되었으며, alkaline phosphatase 활성은 대조군과 알콜군이 비슷한 경향이었다. 포도당농도는 3% 알콜군이 대조군에 비하여 감소되었다.

  • PDF

알코올 섭취 유무에 따른 cyclohexane의 폐 독성 (Alcohol Ingestion Increases Lung Injury Induced by Cyclohexane)

  • 김병렬;이상희;조현국
    • Applied Microscopy
    • /
    • 제35권2호
    • /
    • pp.81-87
    • /
    • 2005
  • 주류의 섭취가 산업화학물질의 생체 내 독성유발에 어떠한 영향을 미치는지를 검초하기 위해 흰쥐를 이용하여 15% 에탄올을 6주간 섭취시킨 후, cyclohexane (CH)을 2일 간격으로 4회 복강 투여하고 24시간 후 다음과 같은 결과를 얻었다. 체중 당 폐 무게와 폐 세척액 내 단백질 함량은 에탄올 전처치군이 대조군과 비교하여 증가되었고, 폐 조직 중 glucose-6-phosphatase의 활성은 감소되었다. 형태학적 변화에서도 CH만 투여한 군과 비교하여 에탄올 6주 섭취 후 CH를 투여한 군에서 부분적인 무기폐현상과 색전현상이 심화되어 나타났다. 따라서 CH 투여 시 에탄올을 전처치함으로써 간 조직 중 CH 효소의 활성이 증가되어, 과잉의 대사부산물들이 폐에 분포됨으로 인해 폐 조직의 손상이 심화되는 것으로 나타났다.

Osteoblastogenesis and osteolysis in the Zucker Diabetic Sprague Dawley rat humerus head

  • Gcwalisile Frances Dlamini;Robert Ndou
    • Anatomy and Cell Biology
    • /
    • 제56권4호
    • /
    • pp.552-561
    • /
    • 2023
  • The endocrinology of type 2 diabetes (T2D) and its predisposing factors have been studied extensively while its skeletal effects have received negligible research despite this being a global disease. The cellular and molecular association between proximal humeral fractures and T2D has not been fully elucidated. We aimed to study bone cell quantities and immunolabel osteogenic and antiosteogenic cytokines. The study used 12-week-old rats (23 males) consisting of 8 Sprague Dawley (SD) and 15 Zucker Diabetic Sprague Dawley (ZDSD). Weekly mass measurements were taken while fasting blood glucose levels were recorded every 2 weeks with oral glucose tolerance tests conducted once every 4 weeks. Upon termination at the age of 28 weeks, humeri were fixed in 10% buffered formalin, prior to decalcification in ethylenediaminetetraacetic acid. The bone samples were then processed in ascending grades of alcohol using an automatic processor before embedding in paraffin wax. Sections were cut at 5 ㎛ thickness in a series for Haematoxylin and Eosin stain, and immunohistochemistry was performed with the anti-tartrate-resistant acid phosphatase (TRAP), anti-alkaline phosphatase (ALP), anti-bone morphogenetic protein 3 (BMP3), anti-transforming growth factor beta 1 (TGFβ1), anti-aged glycation end product (AGE) antibodies in the sequence. ZDSD rats had more adipocytes, BMP3 and AGEs expression with higher numbers of TRAP positive osteocytes and fewer ALP cells although no differences were found in TGFβ1 immunopositivity. We also found that T2D increases the number of AGEs immuno-positive cells, as well as its extracellular expression, thus providing a conducive environment for the interaction of the osteogenic cytokine and its antagonist to suppress osteoblastogenesis. ZDSD groups had higher adipocyte numbers therefore increased marrow adiposity in T2D.

Serum Levels of Xanthine Oxidase Activities in Cyclohexanone-Treated Rats Pretreated with Carbon Tetrachloride

  • Yoon, Chong-Guk
    • 대한의생명과학회지
    • /
    • 제8권1호
    • /
    • pp.47-52
    • /
    • 2002
  • To investigate an effect of cyclohexanone (CHO) treatment on the serum levels of xanthine oxidase (XO) in liver damaged animals, the rats were intraperitoneally pretreated with 50% carbon tetrachloride ($CCl_4$) in olive oil (0.1 mL/ 100 g body weight) 14 times every other day. To the $CCl_4$-pretreated rats, CHO (1.56 g/kg body weight) was injected once and then the animals were sacrificed at 4 hours after CHO treatment. The increasing rate of serum and liver XO activities to the control was higher in CHO-treated animals pretreated with $CCl_4$ than the $CCl_4$-pretreated those. Concomitantly CHO injection to the $CCl_4$-pretreated animals showed somewhat higher Vmax and lower Km value in the kinetics of liver XO enzyme. Furthermore, increasing rate of hepatic malonedialdehyde content to the control was also higher in CHO-treated animals pretreated with $CCl_4$ than $CCl_4$-pretreated those. On the other hand, the injection of CHO to the $CCl_4$-pretreated animals showed the more enhanced liver damage on the basis of liver function finding; liver weight per body weight (%), serum levels of alanine aminotransferase activity and hepatic glucose-6-phosphatase activity. In conclusion, injection of CHO to the $CCl_4$-pretreated rats led to more increased activity of serum XO and it may be caused by acceleration of hepatocyte membrane permeability and induction of enzyme protein.

  • PDF