• 제목/요약/키워드: Protein phosphatase 2A

검색결과 518건 처리시간 0.028초

Pyruvate Dehydrogenase Phosphatase의 Catalytic Subunit의 분리정제 및 결정화 (Purification and Crystallization of the Recombinant Catalytic Subunit of Pyruvate Dehydrogenase Phosphatase)

  • 김영미
    • 한국식품위생안전성학회지
    • /
    • 제18권3호
    • /
    • pp.146-152
    • /
    • 2003
  • 당 대사에 관여하는 Pyruvate dehydrogenase phosphatase (PDP)는 해당과정에서의 대사 산물인 pyruvate 를 acetyl CoA로 만들어 구연산 회로로 진입시켜주는 효소인 Pyruvate dehydrogenase complex(PDP)의 활성을 조절하는 중요한 효소이다. PDP의 catalytic subunit는 PDP의 dihydrolipoamide acetyltransferase(E2), PDP regulatory subunit (PDPr), 그리고 칼슘 결합 도메인 등으로 구성되어 있는 것으로 추측되어지고 있다. 본 연구에서는 PDP 단백질을 분리정제하고 결정화 하고자하였다. PDP는 catalytic subunit(PDPc, Mr 52,600 Da)과, regulatory subunit (PDPr, 95,600 Da)으로 구성되어 있으며 칼슘 존재하에 PDPc는 dihydrolipoamide acetyltransferase(E2) component와 결합하여 기질인 인산 E1 component의 탈인산화율을 증가시킨다. PDPc는 intrinsic 칼슘 결합부위를 가지며 두 번째 칼슘 부위는 E2 존재 하에 형성된다. 이러한 특이한 상호반응을 이용한 GSH-Sepharose-GST-L2 matrix를 이용하여 약 1000 U/mg의 specific activity를 갖는 순수 PDPc를 약 80%의 yield로 얻어 결정화에 사용하였다.

A systematic study of nuclear interactome of C-terminal domain small phosphatase-like 2 using inducible expression system and shotgun proteomics

  • Kang, NaNa;Koo, JaeHyung;Wang, Sen;Hur, Sun Jin;Bahk, Young Yil
    • BMB Reports
    • /
    • 제49권6호
    • /
    • pp.319-324
    • /
    • 2016
  • RNA polymerase II C-terminal domain phosphatases are newly emerging family of phosphatases that contain FCPH domain with Mg+2-binding DXDX(T/V) signature motif. Its subfamily includes small CTD phosphatases (SCPs). Recently, we identified several interacting partners of human SCP1 with appearance of dephosphorylation and O-GlcNAcylation. In this study, using an established cell line with inducible CTDSPL2 protein (a member of the new phosphatase family), proteomic screening was conducted to identify binding partners of CTDSPL2 in nuclear extract through immunoprecipitation of CTDSPL2 with its associated. This approach led to the identification of several interacting partners of CTDSPL2. This will provide a better understanding on CTDSPL2.

Gene Cloning, Expression, and Characterization of Glucose-1-Phosphatase from Enterobacter cloacae B11

  • Kim, Young-Ok;Park, In-Suk;Nam, Bo-Hye;Kong, Hee-Jeong;Kim, Woo-Jin;Lee, Sang-Jun;Kim, Kyung-Kil
    • Fisheries and Aquatic Sciences
    • /
    • 제13권1호
    • /
    • pp.49-55
    • /
    • 2010
  • A bacterial strain with phytase and glucose-1-phosphatase activity was isolated from seawater. The colony was identified as an Enterobacter cloacae strain and named E. cloacae B11. A gene, agpEnB11, coding for an intracellular acid glucose phosphatase was cloned from the strain and sequenced. It comprised 1,242 nucleotides and encoded a polypeptide of 413 amino acids. Recombinant glucose-1-phosphatase (AgpEn) was overexpressed in Escherichia coli and purified using Ni-NTA column under native conditions. Purified protein displayed a single band of 47 kDa on SDS-PAGE. AgpEn hydrolyzed a wide variety of phosphorylated compounds, with high activity for glucose-1-phosphate and glucose-6-phosphate. Optimum pH and temperature for enzyme activity were pH 5.0 and $50^{\circ}C$, respectively. Enzyme activity was stimulated by $Ca^{2+}$ and $Co^{2+}$, and inhibited by $Cu^{2+}$.

식이 단백질의 종류와 함황아미노산 함량이 성장기 쥐의 골밀도에 미치는 영향 (The Effect of Dietary Protein Source and Sulfur Amino acid Content on bone Metabolism in Growing Rats)

  • 최미자;정소형
    • Journal of Nutrition and Health
    • /
    • 제37권2호
    • /
    • pp.100-107
    • /
    • 2004
  • This study was performed to evaluate the effect of dietary protein source and sulfur amino acid content on bone metabolism in ra. Thirty male rats (body weight 145$\pm$2g) were divided into three groups. The rats in the first group were fed on casein 20% diet as animal protein source and those in the second group were fed on soy 20% diet as plant protein source. Sulfur amino acid ratio of these group was 1.07:1. The rats in the third group were fed on soy 20% diet and the sulfur amino acid were supplemented with the amount contained as much in the soy 20% diet. All rats were fed on experimental diet and deionized water ad libitum for 9 weeks, The total body, spine, femur bone mineral density and bone mineral content were measured using Dual Energy X-ray Absorptiometry Calcium, phosphate, pyridinoline, creatinine in urine and calcium, phosphate, alkaline phosphatase, osteocalcin in serum were measured. During the experimental period, plant protein (soy protein) group had a lower urinary Ca excretion, urine pyridinoline & crosslinks value and had a higher Ca efficiency in total bone and femur bone mineral density than animal protein (casein) group. There were no significant differences in serum calcium, phosphate, alkaline phosphatase and osteocalcin among the three groups of the rats. The findings from this study demonstrated that plant protein (soy protein) is beneficial of bone mineral density because it had a higher Ca efficiency in total bone and femur bone mineral density than animal protein (casein). However, the supplementation of sulfur amino acid on soy results were consistent with prior studies that dietary sulfur amino acid load had a negative effect on calcium balance. The rats fed sulfur amino acid supplementation diet increased urinary calcium excretion and decreased calcium efficiency for total and femur mineral density. Therefore, dietary protein source and sulfur amino acid content influence bone metabolism. (Korean J Nutrition 37(2): 100-107, 2004)

Constitutively active Ras negatively regulates Erk MAP kinase through induction of MAP kinase phosphatase 3 (MKP3) in NIH3T3 cells

  • Park, Young Jae;Lee, Jong Min;Shin, Soon Young;Kim, Young Ho
    • BMB Reports
    • /
    • 제47권12호
    • /
    • pp.685-690
    • /
    • 2014
  • The Ras/Raf/MEK/Erk signaling pathway is important for regulation of cell growth, proliferation, differentiation, survival, and apoptosis in response to a variety of extracellular stimuli. Lack of Erk MAPK activation is observed in several cancer cells despite active activation of Ras. However, little is known about the modulation of Erk1/2 activity by active Ras. Here, we show that overexpression of active H-Ras (H-RasG12R) in NIH3T3 fibroblasts impaired FGF2-induced Erk1/2 phosphorylation, as compared to wild-type cells. Northern blot analysis revealed that prolonged expression of active Ras increased MAP kinase phosphatase 3 (MKP3) mRNA expression, a negative regulator of Erk MAPK. Inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway abrogated active Ras-induced up-regulation of MKP3 expression, leading to the rescue of Erk1/2 phosphorylation. Our results demonstrated that the Ras/Raf/MEK/Erk signaling cascade is negatively regulated by the PI3K/Aktdependent transcriptional activation of the MKP3 gene.

Protein Tyrosine Phosphatase, Receptor Type B (PTPRB) Inhibits Brown Adipocyte Differentiation through Regulation of VEGFR2 Phosphorylation

  • Kim, Ji Soo;Kim, Won Kon;Oh, Kyoung-Jin;Lee, Eun-Woo;Han, Baek Soo;Lee, Sang Chul;Bae, Kwang-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권4호
    • /
    • pp.645-650
    • /
    • 2019
  • Brown adipocytes have an important role in the regulation of energy balance through uncoupling protein-1 (UCP-1)-mediated nonshivering thermogenesis. Although brown adipocytes have been highlighted as a new therapeutic target for the treatment of metabolic diseases, such as obesity and type II diabetes in adult humans, the molecular mechanism underlying brown adipogenesis is not fully understood. We recently found that protein tyrosine phosphatase receptor type B (PTPRB) expression dramatically decreased during brown adipogenic differentiation. In this study, we investigated the functional roles of PTPRB and its regulatory mechanism during brown adipocyte differentiation. Ectopic expression of PTPRB led to a reduced brown adipocyte differentiation by suppressing the tyrosine phosphorylation of VEGFR2, whereas a catalytic inactive PTPRB mutant showed no effects on differentiation and phosphorylation. Consistently, the expression of brown adipocyte-related genes, such as UCP-1, $PGC-1{\alpha}$, PRDM16, $PPAR-{\gamma}$, and CIDEA, were significantly inhibited by PTPRB overexpression. Overall, these results suggest that PTPRB functions as a negative regulator of brown adipocyte differentiation through its phosphatase activity-dependent mechanism and may be used as a target protein for the regulation of obesity and type II diabetes.

RBL-2H3 세포에서 IgE-depnedent Histamine-releasing Factor의 탈인산화 효소에 관한 연구 (Identification of Calcium/Calmodulin-Dependent Phosphatase as the Dephosphorylating Enzyme of IgE-Dependent Histamine-Releasing Factor in RBL-2H3)

  • 황선옥;이경림
    • 한국미생물·생명공학회지
    • /
    • 제33권3호
    • /
    • pp.189-193
    • /
    • 2005
  • RBL-2H3 cell lysates에 anti-protein phosphatase(PP) 1, 2A, 2B 항체를 첨가한 후 immunoprecipitation을 실시한 결과 PP2B를 가해준 샘플에서만 HRF를 확인하였다. 역으로 monoclonal anti-HRF 항체를 가한 후 immunoprecipitation을 실시한 결과 PP1, 2A는 검출되지 않았으나 PP2B의 경우는 regulatory subunit(19 kDa), catalyic subunit(60 kDa) 모두 확인할 수 있었다. Affinity chromatography를 통해서도 PP2B가 HRF의 탈인산화에 관여함을 확인하였다 즉 19kDa의 PP2B regulatory subunit과 60kDa의 catalytic subunit 모두가 확인되었으며 외부 $Ca^{2+}$이온 첨가 여부에 따른 차이는 관찰할 수 없었다. 결론적으로 RBL-2H3 cell에서 PP2B는 PP1이나 PP2A에 비해 상대적으로 그 존재량은 적으나 HRF와 상호작용하는 phosphatase로서 검출된 반면 PP1이나 PP2A는 검출되지 않았다.

방선균이 생산하는 인산화타이로신 단백질 포스파타아제의 분자생물학적 연구 (The Molecular Study of Phosphotyrosine Protein Phosphatase (PtpA) from Streptomyces coelicolor A(3)2)

  • 최학선;신용국;김춘성;김시욱
    • 생명과학회지
    • /
    • 제12권1호
    • /
    • pp.113-119
    • /
    • 2002
  • 방선균에 존재하는 단백질 타이로신 포스파타아제의 기능을 알아보기 위하여 우선 이 유전자를 대장균에 클로닝하여 대량으로 발현시킨 결과, 발현된 단백질은 soluble형태로 존재하여 자신의 효소활성을 가지고 있었으나, 효소활성부위에 대한 변이주의 경우에는 기질과 결합은 하였으나 활성이 없는 것으로 나타났었다. 방선균에서 이 효소의 세포내 기작 및 결합 단백질을 파악하기 위해 대장균에 클로닝한 유전자를 방선균 발현벡터(pIJ6021)에 클로닝을 하였다. 이렇게 만든 유전자를 in-ducer인 thiostrepton을 이용하여 발현시킨 결과, 활성형의 단백질 타이로신 포스파타아제가 대량으로 생산되었다. 그리고 이들 유전자를 방선균에서 과잉 발현시킨 결과 항생제 생산 및 형태 변화 등의 표현형은 나타나지 않았다. 이효소와 반응하는 기질 및 결합 단백질을 찾기 위해서 이들과 결합은 하지만 반응하지 않는 돌연변이 단백질 타이로신 포스파타아제 (PtpA(C9S))를 유전자 조작하여 방선균에서 과잉 발현시켰다 그 결과 표현형은 없었지만 인산 타이로신 단백질의 패턴변화를 알 수 있었고, 단백질 타이로신 포스파타아제에 의하여 인산화 조절되는 단백질 3개 찾을 수 있었다. 이들 세 단백질(p65, p90 그리고 p200)은 ptpA(C9S)가 발현된 방선균에서 보다 더 많은 인산화 패턴을 나타내었으며, 이들은 가능한 단백질 타이로신 포스파타아제의 표적이라고 생각되었다. 만약 이들의 구조가 밝혀진다면, 방선균의 타이로신 포스파타아제의 기능 및 신호전달 과정의 역할을 파악할 수 있으리라 생각된다.

Celluomonas sp. AP-7이 생산하는 Ascorbic Acid Phosphorylating Enzyme의 정제 및 특성

  • 이상협;최현일;방원기
    • 한국미생물·생명공학회지
    • /
    • 제25권3호
    • /
    • pp.271-276
    • /
    • 1997
  • An ascorbic acid phosphorylating enzyme, which catalyzes the formation of ascorbic acid-2-phosphate from ascorbic acid and pyrophosphate, was purified 32.7-folds to homogeneity from a cell-free extract of Cellulomonas sp. AP-7. The combination of DEAE- Sephacel ion exchange chromatography and Sephacryl S-200 get filtration was used for their purification. The molecular weight of the native protein was estimated to be 96.lkDa on high performance gel filtration chromatography. The SDS-PAGE analysis indicated that the protein consisted of four identical subunits of 24.6 kDa. The purified enzyme showed the optimal tempeature of 40$\circ$C and optimal pH of 4.5. The Km for ascorbic acid and pyrophosphate were 119 mM and 11.9 mM, respectively. The addition of 5,5'-dithiobis-(2-nitrobenzoic acid) into the reaction mixture resulted in the reduction of the enzyme activity at 51%. The enzyme also had a phosphatase activity at weakly acidic pH and the Km for ascorbic acid-2-phosphate in phosphatase activity was 7.9 mM.

  • PDF

Purification of YPTP1 with Immobilized Phosphonomethylphenylalanine-Containing Peptide as an Affinity Ligand

  • Han, Jun-Pil;Kwon, Mi-Yun;Cho, Hyeong-Jin
    • BMB Reports
    • /
    • 제31권2호
    • /
    • pp.135-138
    • /
    • 1998
  • A previous study on a yeast protein tyrosine phosphatase, YPTP1, using synthetic phosphotyrosine-containing peptides with various sequences as substrates revealed that DADEpYDA exhibits high affinity ($K_m=4{\mu}M$) toward the enzyme. A modified version of this peptide, GDADEpmFDA, immobilized on a resin, was used in this study as an affinity ligand for the purification of YPTP1. Phosphonomethyl-phenylalanine (pmF) was used as a nonhydrolyzable analog of the phosphotyrosine (pY) residue, with properties similar to pY. A protected form of pmF, $Fmoc-pmF(^{t}Bu)_{2}-OH$, was chemically synthesized and introduced during solid-phase peptide sythesis. YPTP1 was onrexpressed in an E. coli strain carrying a plasmid pT7-7-ptpl. Affinity chromatography of the crude lysate afforded PTPI (39 kDa) of about 50% purity.

  • PDF