• 제목/요약/키워드: Protein microarray

검색결과 355건 처리시간 0.03초

An engineered PD-1-based and MMP-2/9-oriented fusion protein exerts potent antitumor effects against melanoma

  • Wei, Mulan;Liu, Xujie;Cao, Chunyu;Yang, Jianlin;Lv, Yafeng;Huang, Jiaojiao;Wang, Yanlin;Qin, Ye
    • BMB Reports
    • /
    • 제51권11호
    • /
    • pp.572-577
    • /
    • 2018
  • Recent studies showed that the PD-1/PD-L1 checkpoint blockade is a dramatic therapy for melanoma by enhancing antitumor immune activity. Currently, major strategies for the PD-1/PD-L1 blockade have mainly focused on the use of antibodies and compounds. Seeking an alternative approach, others employ endogenous proteins as blocking agents. The extracellular domain of PD-1 (ePD1) includes the binding site with PD-L1. Accordingly, we constructed a PD-1-based recombinantly tailored fusion protein (dFv-ePD1) that consists of bivalent variable fragments (dFv) of an MMP-2/9-targeted antibody and ePD1. The melanoma-binding intensity and antitumor activity were also investigated. We found the intense and selective binding capability of the protein dFv-ePD1 to human melanoma specimens was confirmed by a tissue microarray. In addition, dFv-ePD1 significantly suppressed the migration and invasion of mouse melanoma B16-F1 cells, and displayed cytotoxicity to cancer cells in vitro. Notably, dFv-ePD1 significantly inhibited the growth of mouse melanoma B16-F1 tumor cells in mice and in vivo fluorescence imaging showed that dFv-ePD was gradually accumulated into the B16-F1 tumor. Also the B16-F1 tumor fluorescence intensity at the tumor site was stronger than that of dFv. This study indicates that the recombinant protein dFv-ePD1 has an intensive melanoma-binding capability and exerts potent therapeutic efficacy against melanoma. The novel format of the PD-L1-blocked agent may play an active role in antitumor immunotherapy.

Aluminum Nanoparticles Induce ERK and p38MAPK Activation in Rat Brain

  • Kwon, Jung-Taek;Seo, Gyun-Baek;Jo, Eunhye;Lee, Mimi;Kim, Hyun-Mi;Shim, Ilseob;Lee, Byung-Woo;Yoon, Byung-Il;Kim, Pilje;Choi, Kyunghee
    • Toxicological Research
    • /
    • 제29권3호
    • /
    • pp.181-185
    • /
    • 2013
  • Aluminum nanoparticles (Al-NPs) are one of the most widely used nanomaterial in cosmetics and medical materials. For this reason, Al-NP exposure is very likely to occur via inhalation in the environment and the workplace. Nevertheless, little is known about the mechanism of Al-NP neurotoxicity via inhalation exposure. In this study, we investigated the effect AL-NPs on the brain. Rats were exposed to Al-NPs by nasal instillation at 1 mg/kg body weight (low exposure group), 20 mg/kg body weight (moderate exposure group), and 40 mg/kg body weight (high exposure group), for a total of 3 times, with a 24-hr interval after each exposure. Inductively coupled plasma mass spectrometry (ICP-MS) analysis indicated that the presence of aluminum was increased in a dose-dependent manner in the olfactory bulb (OFB) and the brain. In microarray analysis, the regulation of mitogen-activated protein kinases (MAPK) activity (GO: 0043405), including Ptprc, P2rx7, Map2k4, Trib3, Trib1, and Fgd4 was significantly over-expressed in the treated mice than in the controls (p = 0.0027). Moreover, Al-NPs induced the activation of ERK1 and p38 MAPK protein expression in the brain, but did not alter the protein expression of JNK, when compared to the control. These data demonstrate that the nasal exposure of Al-NPs can permeate the brain via the olfactory bulb and modulate the gene and protein expression of MAPK and its activity.

Characterization of Caveola-Vesicle Complexes (CVCs) Protein, PHIST/CVC-8195 in Plasmodium vivax

  • Wang, Bo;Lu, Feng;Han, Jin-Hee;Lee, Seong-Kyun;Cheng, Yang;Nyunt, Myat Htut;Ha, Kwon-Soo;Hong, Seok-Ho;Park, Won Sun;Han, Eun-Taek
    • Parasites, Hosts and Diseases
    • /
    • 제54권6호
    • /
    • pp.725-732
    • /
    • 2016
  • Plasmodium vivax produces numerous caveola-vesicle complex (CVC) structures beneath the membrane of infected erythrocytes. Recently, a member helical interspersed subtelomeric (PHIST) superfamily protein, $PcyPHIST/CVC-81_{95}$, was identified as CVCs-associated protein in Plasmodium cynomolgi and essential for survival of this parasite. Very little information has been documented to date about $PHIST/CVC-81_{95}$ protein in P. vivax. In this study, the recombinant $PvPHIST/CVC-81_{95}$ N and C termini were expressed, and immunoreactivity was assessed using confirmed vivax malaria patients sera by protein microarray. The subcellular localization of $PvPHIST/CVC-81_{95}$ N and C termini in blood stage parasites was also determined. The antigenicity of recombinant $PvPHIST/CVC-81_{95}$ N and C terminal proteins were analyzed by using serum samples from the Republic of Korea. The results showed that immunoreactivities to these proteins had 61% and 43% sensitivity and 96.9% and 93.8% specificity, respectively. The N terminal of $PvPHIST/CVC-81_{95}$ which contains transmembrane domain and export motif (PEXEL; RxLxE/Q/D) produced CVCs location throughout the erythrocytic-stage parasites. However, no fluorescence was detected with antibodies against C terminal fragment of $PvPHIST/CVC-81_{95}$. These results suggest that the $PvPHIST/CVC-81_{95}$ is localized on the CVCs and may be immunogenic in natural infection of P. vivax.

Coordinated alteration of mRNA-microRNA transcriptomes associated with exosomes and fatty acid metabolism in adipose tissue and skeletal muscle in grazing cattle

  • Muroya, Susumu;Ogasawara, Hideki;Nohara, Kana;Oe, Mika;Ojima, Koichi;Hojito, Masayuki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권11호
    • /
    • pp.1824-1836
    • /
    • 2020
  • Objective: On the hypothesis that grazing of cattle prompts organs to secrete or internalize circulating microRNAs (c-miRNAs) in parallel with changes in energy metabolism, we aimed to clarify biological events in adipose, skeletal muscle, and liver tissues in grazing Japanese Shorthorn (JSH) steers by a transcriptomic approach. Methods: The subcutaneous fat (SCF), biceps femoris muscle (BFM), and liver in JSH steers after three months of grazing or housing were analyzed using microarray and quantitative polymerase chain reaction (qPCR), followed by gene ontology (GO) and functional annotation analyses. Results: The results of transcriptomics indicated that SCF was highly responsive to grazing compared to BFM and liver tissues. The 'Exosome', 'Carbohydrate metabolism' and 'Lipid metabolism' were extracted as the relevant GO terms in SCF and BFM, and/or liver from the >1.5-fold-altered mRNAs in grazing steers. The qPCR analyses showed a trend of upregulated gene expression related to exosome secretion and internalization (charged multivesicular body protein 4A, vacuolar protein sorting-associated protein 4B, vesicle associated membrane protein 7, caveolin 1) in the BFM and SCF, as well as upregulation of lipolysis-associated mRNAs (carnitine palmitoyltransferase 1A, hormone-sensitive lipase, perilipin 1, adipose triglyceride lipase, fatty acid binding protein 4) and most of the microRNAs (miRNAs) in SCF. Moreover, gene expression related to fatty acid uptake and inter-organ signaling (solute carrier family 27 member 4 and angiopoietin-like 4) was upregulated in BFM, suggesting activation of SCF-BFM organ crosstalk for energy metabolism. Meanwhile, expression of plasma exosomal miR-16a, miR-19b, miR-21-5p, and miR-142-5p was reduced. According to bioinformatic analyses, the c-miRNA target genes are associated with the terms 'Endosome', 'Caveola', 'Endocytosis', 'Carbohydrate metabolism', and with pathways related to environmental information processing and the endocrine system. Conclusion: Exosome and fatty acid metabolism-related gene expression was altered in SCF of grazing cattle, which could be regulated by miRNA such as miR-142-5p. These changes occurred coordinately in both the SCF and BFM, suggesting involvement of exosome in the SCF-BFM organ crosstalk to modulate energy metabolism.

쥐의 초기 난포 발달에 관여하는 Cell Size Growth 및 CCN Family 유전자에 관한 연구 (Characterization of Genes Related to the Cell Size Growth and CCN Family According to the Early Folliculogenesis in the Mouse)

  • 김경화;박창은;윤세진;이경아
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제32권3호
    • /
    • pp.269-277
    • /
    • 2005
  • Objectives: Previously, we sought to compile a list of genes expressed during early folliculogenesis by using cDNA microarray to investigate follicular gene expression and changes during primordialprimary follicle transition and development of secondary follicles (Yoon et al., 2005). Among those genes, a group of genes related to the cell size growth was characterized during the ovarian development in the present study. Methods: We determined ovarian expression pattern of six genes related to the cell size growth (cyr61, emp1, fhl1, socs2, wig1 and wisp1) and extended into CCN family (${\underline{c}}onnective$ tissue growth factor/${\underline{c}}ysteine$-rich 61/${\underline{n}}ephroblastoma$-overexpressed), ctgf, nov, wisp2, wisp3, including cyr61 and wisp1 genes. Expression of mRNA and protein according to the ovarian developmental stage was evaluated by in situ hybridization, and/or semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR), and immunohistochemistry, respectively. Results: Among 6 genes related to the cell size growth, cyr61 and wisp1 mRNA was detected only in oocytes in the postnatal day5 mouse ovaries. cyr61 mRNA expression was limited to the nucleolus of oocytes, while wisp1 was expressed in the cytoplasm and nucleolus of oocytes, except nucleus. cyr61 mRNA expression, however, was found in granulosa cells from secondary follicles. The rest 4 genes in the cell size growth group were detected in oocytes, granulosa and theca cells. Cyr61 and Wisp1 proteins were expressed in the oocyte cytoplasm from primordial follicle stage. Especially, Cyr61 protein was detected in pre-granulosa cells, Wisp1 protein was not. By using RT-PCR, we evaluated and decided that Cyr61 protein is produced by their own mRNA in pre-granulosa cells that was not detected by in situ hybridization. cyr61 and wisp1 genes are happen to be the CCN family members. The other members of CCN family were also studied, but their expression was detected in oocytes, granulose and theca cells. Conclusions: We firstly characterized the ovarian expression of genes related to the cell size growth and CCN family according to the early folliculogenesis. Cyr61 protein expression in the pre-granulosa cells is profound in meaning. Further functional analysis for cyr61 in early folliculogenesis is under investigation.

Translocalization of enhanced PKM2 protein into the nucleus induced by cancer upregulated gene 2 confers cancer stem cell-like phenotypes

  • Yawut, Natpaphan;Kaowinn, Sirichat;Cho, Il-Rae;Budluang, Phatcharaporn;Kim, Seonghye;Kim, Suhkmann;Youn, So Eun;Koh, Sang Seok;Chung, Young-Hwa
    • BMB Reports
    • /
    • 제55권2호
    • /
    • pp.98-103
    • /
    • 2022
  • Increased mRNA levels of cancer upregulated gene (CUG)2 have been detected in many different tumor tissues using Affymetrix microarray. Oncogenic capability of the CUG2 gene has been further reported. However, the mechanism by which CUG2 overexpression promotes cancer stem cell (CSC)-like phenotypes remains unknown. With recent studies showing that pyruvate kinase muscle 2 (PKM2) is overexpressed in clinical tissues from gastric, lung, and cervical cancer patients, we hypothesized that PKM2 might play an important role in CSC-like phenotypes caused by CUG2 overexpression. The present study revealed that PKM2 protein levels and translocation of PKM2 into the nucleus were enhanced in CUG2-overexpressing lung carcinoma A549 and immortalized bronchial BEAS-2B cells than in control cells. Expression levels of c-Myc, CyclinD1, and PKM2 were increased in CUG2-overexpressing cells than in control cells. Furthermore, EGFR and ERK inhibitors as well as suppression of Yap1 and NEK2 expression reduced PKM2 protein levels. Interestingly, knockdown of β-catenin expression failed to reduce PKM2 protein levels. Furthermore, reduction of PKM2 expression with its siRNA hindered CSC-like phenotypes such as faster wound healing, aggressive transwell migration, and increased size/number of sphere formation. The introduction of mutant S37A PKM2-green fluorescence protein (GFP) into cells without ability to move to the nucleus did not confer CSC-like phenotypes, whereas forced expression of wild-type PKM2 promoted such phenotypes. Overall, CUG2-induced increase in the expression of nuclear PKM2 contributes to CSC-like phenotypes by upregulating c-Myc and CyclinD1 as a co-activator.

심근세포로의 분화에 관여하는 새로운 생리활성 단백질 SPP2의 발굴 (Identification and Characterization of Secreted Phosphoprotein 2 as a Novel Bioactive Protein for Myocardial Differentiation)

  • 전세진
    • 생명과학회지
    • /
    • 제33권1호
    • /
    • pp.64-72
    • /
    • 2023
  • 심장 발생과정에 관여하는 주요 전사인자들의 기능에 대한 규명 등의 발전에도 불구하고 줄기 세포에서 매우 효율적인 심근 세포로의 분화를 촉진하는 새로운 생체 활성 분자를 찾는 것이 여전히 필요하다. 마우스배아줄기세포(mESC) 유래 심근세포의 Illumina 발현 마이크로어레이 데이터를 분석하였다. 미분화 mESCs와 비교하여 mESC 유래 심근세포에서 4배 이상 유전자 발현이 증가한 276개 유전자가 스크리닝되었다. Secreted phosphoprotein 2 (Spp2)는 후보물질 중 하나이며 bone morphogenetic protein 2 (BMP2)에 대한 슈도수용체로서 BMP2 신호 전달을 억제하는 것으로 알려져 있다. 그러나 심근 형성과의 연관성은 알려진 바 없다. 우리는 mESC 세포주인 TC-1/Kh2와 E14를 이용하여 기능성 심근세포로 분화하는 동안 Spp2 발현이 증가함을 검증하였다. 흥미롭게도, Spp2 분비는 배아체(embryoid body, EBs) 형성 후 3일차에 일시적으로 증가했는데, 이는 Spp2의 분비가 ESCs의 심근세포로의 분화에 관여함을 시사한다. Spp2의 기능을 분석하기 위해, 우리는 BMP2를 처리하면 분화 경로를 근모세포에서 골모세포로 전환되는 특성을 가진 C2C12 마우스 근모세포 세포주를 사용하여 실험을 수행하였다. mESCs의 분화와 유사하게, Spp2의 전사는 C2C12 근모세포가 근관으로 분화됨에 따라 증가하였다. 특히, 분화 초기 단계에서 Spp2의 세포외 분비가 극적으로 증가하였다. 또한, Spp2-Flag 재조합 단백질로 처리하면 C2C12 근모세포의 근관으로의 분화가 촉진되었다. 종합하면, ESCs를 심근 세포로 분화시키는 새로운 생체 활성 단백질로 Spp2를 제안한다. 이것은 심근형성의 분자 경로를 이해하고 허혈성 심장질환에 대한 줄기세포 요법의 실험적 또는 임상적 발전을 촉진하는 역할을 할 것으로 기대한다.

The Histone Demethylase PHF2 Promotes Fat Cell Differentiation as an Epigenetic Activator of Both C/EBPα and C/EBPδ

  • Lee, Kyoung-Hwa;Ju, Uk-Il;Song, Jung-Yup;Chun, Yang-Sook
    • Molecules and Cells
    • /
    • 제37권10호
    • /
    • pp.734-741
    • /
    • 2014
  • Histone modifications on major transcription factor target genes are one of the major regulatory mechanisms controlling adipogenesis. Plant homeodomain finger 2 (PHF2) is a Jumonji domain-containing protein and is known to demethylate the histone H3K9, a repressive gene marker. To better understand the function of PHF2 in adipocyte differentiation, we constructed stable PHF2 knock-down cells by using the mouse pre-adipocyte cell line 3T3-L1. When induced with adipogenic media, PHF2 knock-down cells showed reduced lipid accumulation compared to control cells. Differential expression using a cDNA microarray revealed significant reduction of metabolic pathway genes in the PHF2 knock-down cell line after differentiation. The reduced expression of major transcription factors and adipokines was confirmed with reverse transcription- quantitative polymerase chain reaction and Western blotting. We further performed co-immunoprecipitation analysis of PHF2 with four major adipogenic transcription factors, and we found that CCATT/enhancer binding protein (C/EBP)${\alpha}$ and C/EBP${\delta}$ physically interact with PHF2. In addition, PHF2 binding to target gene promoters was confirmed with a chromatin immunoprecipitation experiment. Finally, histone H3K9 methylation markers on the PHF2-binding sequences were increased in PHF2 knock-down cells after differentiation. Together, these results demonstrate that PHF2 histone demethylase controls adipogenic gene expression during differentiation.

Expression of Tiam1 in Lung Cancer and its Clinical Significance

  • Wang, Hong-Ming;Wang, Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권2호
    • /
    • pp.613-615
    • /
    • 2012
  • The aim of this study was to ana1yze T-cell lymphoma invasion and metastasis-inducing factor 1 (Tiam1) expression in 1ung cancer patients. A total of 204 patients with lung cancer tissue lesions were enrolled in the present study, along with 40 cases of normal lung tissue and 40 of normal fetal lung tissue. Tiam1 protein expression level was determined using intensity quantitative analysis, for comparison in lung cancer, metastatic, normal lung, and fetal lung tissue. The positive unit (PU) of Tiam1 was $13.5{\pm}5.42$ in lung cancer,$5.67{\pm}1.56$ in norma1 epithelial cells, and $5.89{\pm}1.45$ in fetal lung epithelial cells. The value in the lung cancer tissue was significantly higher than that in the normal lung tissue and the fetal lung tissue (P<0.01). The Tiam1 PU values with lymph node metastasis and without 1ymph node metastasis were $15.2{\pm}4.34$ and $12.5{\pm}4.23$, respectively, and the difference was statistically significant (P<0.05). The Tiam1 PU values in different tumor, nodes, metastasis (TNM) stages, III-IV period, and I-II phase were $14.7{\pm}4.14$ and $11.0{\pm}5.34$ (P<0.05). A correlation was found between Tiam1 expression and the age of patient, tumor size, tumor type, and tumor differentiation. Tiam1 protein expression in the lung tumor tissue is significantly higher than that in the normal lung tissue and fetal lung tissue. Tiam1 expression may be closely related to lung cancer development and metastasis.

CaGe: A Web-Based Cancer Gene Annotation System for Cancer Genomics

  • Park, Young-Kyu;Kang, Tae-Wook;Baek, Su-Jin;Kim, Kwon-Il;Kim, Seon-Young;Lee, Do-Heon;Kim, Yong-Sung
    • Genomics & Informatics
    • /
    • 제10권1호
    • /
    • pp.33-39
    • /
    • 2012
  • High-throughput genomic technologies (HGTs), including next-generation DNA sequencing (NGS), microarray, and serial analysis of gene expression (SAGE), have become effective experimental tools for cancer genomics to identify cancer-associated somatic genomic alterations and genes. The main hurdle in cancer genomics is to identify the real causative mutations or genes out of many candidates from an HGT-based cancer genomic analysis. One useful approach is to refer to known cancer genes and associated information. The list of known cancer genes can be used to determine candidates of cancer driver mutations, while cancer gene-related information, including gene expression, protein-protein interaction, and pathways, can be useful for scoring novel candidates. Some cancer gene or mutation databases exist for this purpose, but few specialized tools exist for an automated analysis of a long gene list from an HGT-based cancer genomic analysis. This report presents a new web-accessible bioinformatic tool, called CaGe, a cancer genome annotation system for the assessment of candidates of cancer genes from HGT-based cancer genomics. The tool provides users with information on cancer-related genes, mutations, pathways, and associated annotations through annotation and browsing functions. With this tool, researchers can classify their candidate genes from cancer genome studies into either previously reported or novel categories of cancer genes and gain insight into underlying carcinogenic mechanisms through a pathway analysis. We show the usefulness of CaGe by assessing its performance in annotating somatic mutations from a published small cell lung cancer study.